版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省省级示范高中高一上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.2.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.3.已知函数,若,,互不相等,且,则的取值范围是()A. B.C. D.4.半径为的半圆卷成一个圆锥,则它的体积是()A. B.C. D.5.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.86.中国5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%7.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,小数记录法的数据V和五分记录法的数据L满足,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(注:)A.0.6 B.0.8C.1.2 D.1.58.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.9.定义在R上的函数满足,且当时,,,若任给,存在,使得,则实数a的取值范围为().A. B.C. D.10.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则__________12.已知函数,,则它的单调递增区间为______13.若,则_________14.函数的最小值为_________________15.已知幂函数是奇函数,则___________.16.函数最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为正方形,底面,该四棱锥的正视图和侧视图均为腰长为6的等腰直角三角形.(1)画出相应的俯视图,并求出该俯视图的面积;(2)求证:;(3)求四棱锥外接球的直径.18.已知函数其中,求:函数的最小正周期和单调递减区间;函数图象的对称轴19.已知圆过三个点.(1)求圆的方程;(2)过原点的动直线与圆相交于不同的两点,求线段的中点的轨迹.20.某市有,两家乒乓球俱乐部,两家的设备和服务都很好,但收费标准不同,俱乐部每张球台每小时5元,俱乐部按月收费,一个月中以内(含)每张球台90元,超过的部分每张球台每小时加收2元.某学校准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于,也不超过(1)设在俱乐部租一-张球台开展活动的收费为元,在俱乐部租一张球台开展活动的收费为元,试求和的解析式;(2)问选择哪家俱乐部比较合算?为什么?21.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.2、A【解析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【详解】设函数在上是增函数,解得故选:A【点睛】本题主要考查了由复合函数的单调性求参数范围,属于中档题.3、A【解析】画出图像,利用正弦函数的对称性求出,再结合的范围即可求解.【详解】不妨设,画出的图像,即与有3个交点,由图像可知,关于对称,即,令,解得,所以,故,.故选:A.4、C【解析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【详解】设底面半径为r,则,所以.所以圆锥高.所以体积.故选:C.【点睛】本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.5、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.6、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B7、B【解析】当时,即可得到答案.【详解】由题意可得当时故选:B8、C【解析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【详解】由题意得:,即,两边取对数,,解得:.故选:C9、D【解析】求出在,上的值域,利用的性质得出在,上的值域,再求出在,上的值域,根据题意得出两值域的包含关系,从而解出的范围【详解】解:当时,,可得在,上单调递减,在上单调递增,在,上的值域为,,在上的值域为,,在上的值域为,,,,在上的值域为,,当时,为增函数,在,上的值域为,,,解得;当时,为减函数,在,上的值域为,,,解得;当时,为常数函数,值域为,不符合题意;综上,的范围是或故选:【点睛】本题考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则值域是值域的子集10、B【解析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出.【详解】因为,所以,所以.【点睛】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题.12、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为13、【解析】先求得,然后求得.【详解】,.故答案为:14、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键15、1【解析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果.【详解】由题意得,∴或1,当时,是偶函数;当时,是奇函数.故答案为:1.16、3【解析】分析:利用复合函数的性质求已知函数的最大值.详解:由题得当=1时,函数取最大值2×1+1=3.故答案为3.点睛:本题主要考查正弦型函数的最大值,意在考查学生对该基础知识的掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3).【解析】(1)该四棱锥的俯视图为边长为6cm的正方形(内含对角线),如图,即可得出面积(2)设法证明面即可;(3)由侧视图可求得即为四棱锥外接球的直径试题解析:(1)该四棱锥的俯视图为(内含对角线),边长为6的正方形,如图,其面积为36.(2)证明:因为底面,底面,所以,由底面为正方形,所以,,面,面,所以面,面,所以(3)由侧视图可求得由正视图可知,所以在Rt△中,.所以四棱锥外接球直径为.18、(1)最小正周期为,;(2),.【解析】利用正余弦的二倍角公式和辅助角公式将函数解析式化简,再利用正弦函数的周期性、单调性,即可得出结论.利用正弦函数图象的对称性,即可得图象的对称轴【详解】函数,故函数的最小正周期为,令,求得,故函数的减区间为,令,求得,,故函数的图象的对称轴为,【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,以及图象的对称性,属于中档题19、(1)(2)【解析】(1)设圆的方程为,列出方程组,求得的值,即可求得圆的方程;(2)根据题意得到,得出在以为直径的圆上,得到以为直径的圆的方程,再联立两圆的方程组,求得交点坐标,即可得到点的轨迹方程.【小问1详解】解:设圆的方程为,因为圆过三个点,可得,解得,所以圆的方程为,即.【小问2详解】解:因为为线段的中点,且,所以在以为直径的圆上,以为直径的圆的方程为,联立方程组,解得或,所以点的轨迹方程为.20、(1);(2)当时,选择俱乐部比较合算;当时,两家都一样;当时,选择俱乐部比较合算.【解析】(1)根据已给函数模型求出函数解析式(2)比较和的大小可得(可先解方程,然后确定不同范围内两个函数值的大小【详解】(1)由题意可得当时,,当时,,∴(2)当时,,,∴;当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大连市公安局面向社会公开招聘警务辅助人员348人备考题库及答案详解1套
- 2025年威海市检察机关公开招聘聘用制书记员31人备考题库及一套答案详解
- 2025年锡林郭勒盟应急管理局关于公开招聘驻矿安全生产监管专家的备考题库及完整答案详解一套
- 学校召开《安全隐患大排查大整治百日攻坚专项行动》部署会议
- 2025年浙江大学中国农村发展研究院招聘备考题库有答案详解
- 国家知识产权局专利局专利审查协作四川中心2026年度专利审查员公开招聘备考题库及答案详解一套
- 2024年揭阳市揭西县公安局招聘警务辅助人员考试真题
- 2025年复旦大学脑智研究院招聘办公室行政助理岗位备考题库及1套参考答案详解
- 2026年河北沧州市第四医院招聘卫生专业技术人员考试重点题库及答案解析
- 2025年全球区块链技术五年应用前景报告
- 《锂离子电池生产安全规范AQ 7017-2025》解读
- 学堂在线 雨课堂 学堂云 研究生素养课-积极心理与情绪智慧 期末考试答案
- 学堂在线 雨课堂 学堂云 科学研究方法与论文写作 期末考试答案
- 舞蹈机构卫生管理制度
- 哈尔滨历史考试题及答案
- FSMS食品安全管理体系
- DB43-T 2066-2021 河湖管理范围划定技术规程
- 纺织品物理性能及检验要求试题及答案
- 2025年设计院中层干部述职报告
- GB/T 45451.2-2025包装塑料桶第2部分:公称容量为208.2 L至220 L的不可拆盖(闭口)桶
- 采购管理 关于印发《中国联通采购管理办法》的通知学习资料
评论
0/150
提交评论