2026届河北大名一中高一数学第一学期期末考试模拟试题含解析_第1页
2026届河北大名一中高一数学第一学期期末考试模拟试题含解析_第2页
2026届河北大名一中高一数学第一学期期末考试模拟试题含解析_第3页
2026届河北大名一中高一数学第一学期期末考试模拟试题含解析_第4页
2026届河北大名一中高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河北大名一中高一数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,点,,在的图像上,且.对于,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④2.函数的部分图像为()A. B.C. D.3.对于函数,下列说法正确的是A.函数图象关于点对称B.函数图象关于直线对称C.将它的图象向左平移个单位,得到的图象D.将它的图象上各点的横坐标缩小为原来的倍,得到的图象4.已知角α的终边经过点,则等于()A. B.C. D.5.函数的单调递减区间是()A.() B.()C.() D.()6.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°7.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.8.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个9.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④10.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是___________.12.已知,则__________.13.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.14.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.15.为了得到函数的图象,可以将函数的图象向右平移_________个单位长度而得16.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于不等式.(1)若不等式的解集为,求实数的值;(2)若,成立,求实数的取值范围.18.某种树木栽种时高度为A米为常数,记栽种x年后的高度为,经研究发现,近似地满足,其中,a,b为常数,,已知,栽种三年后该树木的高度为栽种时高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍参考数据:,19.已知函数满足:.(1)证明:;(2)对满足已知的任意值,都有成立,求m的最小值.20.已知直线和点,设过点且与平行的直线为.(1)求直线的方程;(2)求点关于直线的对称点21.已知不等式的解集为(1)求的值;(2)求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确.【详解】由题意,函数为单调递增函数,因为点,,在的图像上,且,不妨设,可得,则,因为,可得,又由因为,,,,所以,所以所以,所以一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得,根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确.故选:A.2、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D3、B【解析】,所以点不是对称中心,对称中心需要满足整体角等于,,A错.,所以直线是对称轴,对称轴需要满足整体角等于,,B对.将函数向左平移个单位,得到的图像,C错.将它的图像上各点的横坐标缩小为原来的倍,得到的图像,D错,选B.(1)对于和来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为(2)三角函数图像平移:路径①:先向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象路径②:先将曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sinωx的图象;然后把曲线向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象4、D【解析】由任意角三角函数的定义可得结果.【详解】依题意得.故选:D.5、A【解析】根据余弦函数单调性,解得到答案.【详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.6、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.7、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决8、C【解析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C9、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题10、D【解析】令则即当时,当时,则令,,由图得共有个点故选二、填空题:本大题共6小题,每小题5分,共30分。11、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.12、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:313、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.14、【解析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键15、(答案不唯一);【解析】由于,再根据平移求解即可.【详解】解:由于,故将函数的图象向右平移个单位长度可得函数图像.故答案为:16、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)结合一元二次不等式的解集、一元二次方程的根的关系列方程,由此求得的值.(2)对分成可两种情况进行分类讨论,结合判别式求得的取值范围.【详解】(1)关于的不等式的解集为,∴和1是方程的两个实数根,代入得,解得;(2)当时,不等式为,满足题意;当时,应满足,解得;综上知,实数的取值范围是.18、(Ⅰ),;(Ⅱ)5年.【解析】Ⅰ由及联立解方程组可得;Ⅱ解不等式,利用对数知识可得【详解】Ⅰ,,

,又,即,,联立解得,,Ⅱ由Ⅰ得,由得,,故栽种5年后,该树木的高度将不低于栽种时的5倍【点睛】本题考查了函数解析式的求解及对数的运算,考查了函数的实际应用问题,属于中档题19、(1)证明见解析;(2).【解析】(1)由二次不等式恒成立,可得判别式小于等于0,化简即可得证;(2)由(1)可得,分别讨论或,运用参数分离和函数的单调性,可求得所求的最小值.【详解】(1)证明:.即恒成立.则,化简得;(2)由(1)得,当时,,令,则,令在上单调递增,所以,所以;当时,,所以,此时或0,,从而有,综上可得,m的最小值为.【点睛】方法点睛:本题考查不等式的证明,以及不等式恒成立问题,常运用参变分离的方法,运用函数的单调性,最值的方法得以解决.20、(1)x+2y-3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论