版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区阿拉善盟2026届高二上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.2.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.3.已知,,则()A. B.C. D.4.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.5.圆与圆的位置关系为()A.内切 B.相交C.外切 D.外离6.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.7.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则8.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.69.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,10.已知等差数列满足,则等于()A. B.C. D.11.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-212.若倾斜角为的直线过,两点,则实数()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列中,,那么等于______.14.在公差不为0的等差数列中,为其前n项和,若,则正整数______15.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______16.命题,恒成立是假命题,则实数a取值范围是________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设p:;q:关于x的方程无实根.(1)若q为真命题,求实数k的取值范围;(2)若是假命题,且是真命题,求实数k的取值范围.18.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围19.(12分)某地从今年8月份开始启动12-14岁人群新冠肺炎疫苗的接种工作,共有8千人需要接种疫苗.前4周的累计接种人数统计如下表:前x周1234累计接种人数y(千人)2.5344.5(1)求y关于的线性回归方程;(2)根据(1)中所求的回归方程,预计该地第几周才能完成疫苗接种工作?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,20.(12分)已知等比数列满足(1)求的通项公式;(2)记的前n项和为,证明:,,成等差数列21.(12分)已知抛物线上的点M到焦点F的距离为5,点M到x轴的距离为(1)求抛物线C的方程;(2)若抛物线C的准线l与x轴交于点Q,过点Q作直线交抛物线C于A,B两点,设直线FA,FB的斜率分别为,.求的值22.(10分)已知,,且,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.2、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D3、C【解析】利用空间向量的坐标运算即可求解.【详解】因为,,所以,故选:C.4、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.5、C【解析】将圆的一般方程化为标准方程,根据圆心距和半径的关系,判断两圆的位置关系.【详解】圆的标准方程为,圆的标准方程为,两圆的圆心距为,即圆心距等于两圆半径之和,故两圆外切,故选:C.6、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.7、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C8、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B9、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.10、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.11、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.12、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.14、13【解析】设等差数列公差为d,根据等差数列通项公式、前n项和公式及可求k.【详解】设等差数列公差为d,∵,∴,即,即,∴.故答案为:13.15、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:16、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据命题的真假,结合一元二次方程无实根,列出的不等式,即可求得结果;(2)求得命题为真对应的的范围,结合命题一个为真命题一个为假命题,即可列出的不等式组,求解即可.【小问1详解】若q为真命题,则,解得,即实数k的取值范围为.【小问2详解】若p为真,,解得,由是假命题,且是真命题,得:p、q两命题一真一假,当p真q假时,或,得,当p假q真时,,此时无解.综上的取值范围为.18、(1)(2)【解析】(1)移项,两边平方即可获解;(2)利用绝对值不等式即可.【小问1详解】即即,即即即或所以不等式的解集为【小问2详解】由题知对恒成立因为.所以,解得即或,所以实数的取值范为19、(1);(2)预计第9周才能完成接种工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小问1详解】解:由表中数据得,,,,.所以所以y关于的线性回归方程为.【小问2详解】解:令,解得.所以预计第9周才能完成接种工作.20、(1)(2)证明见解析【解析】(1)设等比数列的公比为,根据,求得的值,即可求得数列的通项公式;(2)由等比数列的求和公式求得,得到,,化简得到,即可求解【小问1详解】解:设等比数列的公比为,因为,所以,解得,所以,所以数列的通项公式【小问2详解】解:由(1)可得,,,所以,所以,即,,成等差数列21、(1)(2)0【解析】(1)由焦半径公式求C的方程;(2)设直线AB方程,与抛物线方程联立,由韦达定理表示出,,代入中化简求值即可.小问1详解】设点,则,所以,解得因为,所以.所以抛物线C的方程为【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中建二局商务管理部招聘备考题库及参考答案详解
- 国家知识产权局专利局专利审查协作江苏中心2026年度专利审查员公开招聘备考题库完整参考答案详解
- 2025年福建海峡银行龙岩分行诚聘英才备考题库及一套参考答案详解
- 安徽省课程设计大赛
- 2025年中国科学院深海科学与工程研究所招聘备考题库(十三)附答案详解
- 2025广东茂名市公安局电白分局第十一批招聘警务辅助人员70人考试重点题库及答案解析
- 2025年量子计算技术突破与应用报告
- 2025年中国社会科学院亚太与全球战略研究院公开招聘第一批专业技术人员备考题库及一套参考答案详解
- 2025年度葫芦岛市市直部分事业单位公开招聘高层次人才84人考试重点题库及答案解析
- 2025年东莞市公安局凤岗分局警务辅助人员招聘12人备考题库及1套参考答案详解
- 高中英语语法过去完成时优秀公开课课件
- 《思想道德与法治》材料分析题
- CQI-12特殊过程:涂装系统评估表(中文第三版)
- 云南省地方课程四年级上册《源远流长话云南》期末试卷
- 套筒窑工艺控制
- 任良天集体备课基本不等式
- GB/T 2975-2018钢及钢产品 力学性能试验取样位置及试样制备
- GB/T 21254-2017呼出气体酒精含量检测仪
- GB/T 11334-2005产品几何量技术规范(GPS)圆锥公差
- GB 4806.5-2016食品安全国家标准玻璃制品
- 《建设项目档案管理规范》解读-项目电子文件归档与电子档案管理课件
评论
0/150
提交评论