山东省潍坊市安丘市2025年高三考前热身数学试卷含解析_第1页
山东省潍坊市安丘市2025年高三考前热身数学试卷含解析_第2页
山东省潍坊市安丘市2025年高三考前热身数学试卷含解析_第3页
山东省潍坊市安丘市2025年高三考前热身数学试卷含解析_第4页
山东省潍坊市安丘市2025年高三考前热身数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市安丘市2025年高三考前热身数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q2.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.804.若点是角的终边上一点,则()A. B. C. D.5.使得的展开式中含有常数项的最小的n为()A. B. C. D.6.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.87.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.8.函数的定义域为,集合,则()A. B. C. D.9.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.10.下列判断错误的是()A.若随机变量服从正态分布,则B.已知直线平面,直线平面,则“”是“”的充分不必要条件C.若随机变量服从二项分布:,则D.是的充分不必要条件11.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.12.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中,含项的系数为______.14.若实数满足不等式组,则的最小值是___15.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.16.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.18.(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.19.(12分)已知,,求证:(1);(2).20.(12分)设函数,其中.(Ⅰ)当为偶函数时,求函数的极值;(Ⅱ)若函数在区间上有两个零点,求的取值范围.21.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值.22.(10分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C2.A【解析】

由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.三角函数图象变换方法:3.D【解析】

根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.4.A【解析】

根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.5.B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.6.B【解析】

建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.7.C【解析】

先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.8.A【解析】

根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.本题考查了交集及其运算,考查了函数定义域的求法,是基础题.9.C【解析】

设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.10.D【解析】

根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布:,则,故选项正确,不符合题意;对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.11.B【解析】

由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.本题考查了利用三视图求几何体体积的问题,是基础题.12.A【解析】

由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.2【解析】

变换得到,展开式的通项为,计算得到答案.【详解】,的展开式的通项为:.含项的系数为:.故答案为:.本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.14.-1【解析】作出可行域,如图:由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)所以-1故答案为-115.【解析】

先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.16.【解析】

根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以故答案为:.本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析,(1)存在,【解析】

(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,,联立直线方程和椭圆方程,根据韦达定理以及,,可得,根据其为定值,则有,进而可得结果.【详解】(1)因为,,所以,因为圆的半径为,圆的半径为,又因为,所以,即,所以圆与圆有公共点,设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,所以,,,即轨迹的方程为;(1)过点且斜率为的直线方程为,设,由消去得到,则,,①因为,,所以,将①式代入整理得因为,所以当时,即时,.即存在实数使得.本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力和计算能力,是中档题.18..【解析】

根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.【详解】因为矩阵的特征多项式,所以,所以.因为,且,所以.本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.19.(1)见解析;(2)见解析.【解析】

(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.20.(Ⅰ)极小值,极大值;(Ⅱ)或【解析】

(Ⅰ)根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,(Ⅱ)先分离变量,转化研究函数,,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围.【详解】(Ⅰ)由函数是偶函数,得,即对于任意实数都成立,所以.此时,则.由,解得.当x变化时,与的变化情况如下表所示:00↘极小值↗极大值↘所以在,上单调递减,在上单调递增.所以有极小值,有极大值.(Ⅱ)由,得.所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.对函数求导,得.由,解得,.当x变化时,与的变化情况如下表所示:00↘极小值↗极大值↘所以在,上单调递减,在上单调递增.又因为,,,,所以当或时,直线与曲线,有且只有两个公共点.即当或时,函数在区间上有两个零点.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.21.(1);(2)见解析【解析】

将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】(Ⅰ)由题意得原式的最小正周期为.(Ⅱ),.当,即时,;当,即时,.综上,得时,取得最小值为0;当时,取得最大值为.本题主要考查了两角和与差的余弦公式展开,辅助角公式,三角函数的性质等,较为综合,也是常考题型,需要计算正确,属于基础题22.(1)(2)详见解析【解析】

(1)将原不等式转化为,构造函数,求得的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论