【《超分子溶剂的种类分析文献综述》6200字(论文)】_第1页
【《超分子溶剂的种类分析文献综述》6200字(论文)】_第2页
【《超分子溶剂的种类分析文献综述》6200字(论文)】_第3页
【《超分子溶剂的种类分析文献综述》6200字(论文)】_第4页
【《超分子溶剂的种类分析文献综述》6200字(论文)】_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

超分子溶剂的种类分析文献综述目录TOC\o"1-3"\h\u2344超分子溶剂的种类分析文献综述 1125151.1基于非离子表面活性剂的超分子溶剂 1192131.2基于离子型表面活性剂的超分子溶剂 291291.3基于长链烷醇的超分子溶剂 7根据两亲分子亲水头基中电荷的存在形式,可将其分为四类,即阴离子型(带负电荷),常见如含硫酸根,磺酸根或羧酸根;阳离子型(带正电荷),常见如含季铵基;非离子型(不带电),源自烷醇,烷基酚和胺与环氧乙烷或环氧丙烷的反应制得;两性离子型(在中等pH下同时显示正电荷和负电荷),常见如酰基乙二胺和烷基氨基酸。因此,超分子溶剂也可以根据两亲分子类型分成不同的种类。1.1基于非离子表面活性剂的超分子溶剂非离子表面活性剂是指分子中含有在水溶液中不带电荷、不离解的醚基为主要亲水基的表面活性剂,体现中性分子的性质。非离子表面活性剂按照亲水基的结构可以分为聚氧乙烯型、多元醇型、烷醇酰胺型、聚醚型、氧化胺型等。非离子表面活性剂具有很高的表面活性,在各种溶剂中的溶解性良好,可应用pH值范围比一般离子型表面活性剂广。当非离子表面活性剂溶液浓度大于临界胶束浓度时,逐渐升高温度且体系温度高于浊点(CP)时,胶束聚集体中表面活性剂头基与水分子之间的氢键作用被破坏,水分子逃逸出来,使得胶束发生脱水作用,在水中溶解度降低,此时溶液会起浊。温度进一步升高,引起体系的液-液两相分离,形成胶体富集相和水相。此胶体富集相即为基于非离子表面活性剂的超分子溶剂,又称非离子胶束型超分子溶剂,应用该超分子溶剂的萃取技术称为浊点萃取(cloudpointextraction,CPE)(如图1.7所示)ADDINEN.CITE<EndNote><Cite><Author>Watanabe</Author><Year>1978</Year><RecNum>396</RecNum><DisplayText>[4]</DisplayText><record><rec-number>396</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">396</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Watanabe,H.</author><author>Tanaka,H.</author></authors></contributors><titles><title>Anon-ionicsurfactantasanewsolventforliquid-liquidextractionofzinc(II)with1-(2-pyridylazo)-2-naphthol</title><secondary-title>Talanta</secondary-title></titles><periodical><full-title>Talanta</full-title></periodical><pages>585-589</pages><volume>25</volume><dates><year>1978</year></dates><urls></urls></record></Cite></EndNote>[\o"Watanabe,1978#396"4]。基于非离子表面活性剂的低毒性、不可燃性、低挥发性和不电离性,非离子胶束型超分子溶剂绿色环保,稳定性高,不易受酸、碱和强电解质的影响。基于疏水相互作用,非离子超分子溶剂已证明适用于多种样品的非极性和中度非极性分析物的提取,主要集中在环境、食品和生物样品中多环芳烃ADDINEN.CITEADDINEN.CITE.DATA[\o"Li,2008#418"44,\o"Song,2006#419"45]、农药ADDINEN.CITEADDINEN.CITE.DATA[\o"Zhou,2009#420"46,\o"Chen,2009#421"47]和生物活性化合物ADDINEN.CITE<EndNote><Cite><Author>More</Author><Year>2019</Year><RecNum>168</RecNum><DisplayText>[48]</DisplayText><record><rec-number>168</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">168</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>More,P.R.</author><author>Arya,S.S.</author></authors></contributors><titles><title>Anovel,greencloudpointextractionandseparationofphenolsandflavonoidsfrompomegranatepeel:anoptimizationstudyusingRCCD</title><secondary-title>JournalofEnvironmentalChemicalEngineering</secondary-title></titles><periodical><full-title>JournalofEnvironmentalChemicalEngineering</full-title></periodical><pages>103306</pages><volume>7</volume><number>5</number><dates><year>2019</year></dates><isbn>22133437</isbn><urls></urls><electronic-resource-num>10.1016/j.jece.2019.103306</electronic-resource-num></record></Cite></EndNote>[\o"More,2019#168"48]的提取,在染料ADDINEN.CITE<EndNote><Cite><Author>Liu</Author><Year>2007</Year><RecNum>422</RecNum><DisplayText>[49]</DisplayText><record><rec-number>422</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">422</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Liu,W.</author><author>Zhao,W.</author><author>Chen,J.</author><author>Yang,M.</author></authors></contributors><auth-address>CollegeofScience,NanjingAgriculturalUniversity,Nanjing,JiangsuProvince210095,PRChina.</auth-address><titles><title>AcloudpointextractionapproachusingTritonX-100fortheseparationandpreconcentrationofSudandyesinchillipowder</title><secondary-title>AnalyticaChimicaActa</secondary-title><alt-title>Analyticachimicaacta</alt-title></titles><periodical><full-title>AnalyticaChimicaActa</full-title></periodical><alt-periodical><full-title>AnalyticaChimicaActa</full-title></alt-periodical><pages>41-5</pages><volume>605</volume><number>1</number><dates><year>2007</year><pub-dates><date>Dec12</date></pub-dates></dates><isbn>1873-4324(Electronic) 0003-2670(Linking)</isbn><accession-num>18022409</accession-num><urls><related-urls><url>/pubmed/18022409</url></related-urls></urls><electronic-resource-num>10.1016/j.aca.2007.10.034</electronic-resource-num></record></Cite></EndNote>[\o"Liu,2007#422"49],内分泌干扰物ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2006</Year><RecNum>408</RecNum><DisplayText>[23]</DisplayText><record><rec-number>408</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">408</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,L.</author><author>Cai,Y.</author><author>He,B.</author><author>Yuan,C.</author><author>Shen,D.</author><author>Shao,J.</author><author>Jiang,G.</author></authors></contributors><titles><title>DeterminationofestrogensinwaterbyHPLC–UVusingcloudpointextraction</title><secondary-title>Talanta</secondary-title></titles><periodical><full-title>Talanta</full-title></periodical><pages>47-51</pages><volume>70</volume><number>1</number><dates><year>2006</year></dates><isbn>00399140</isbn><urls></urls><electronic-resource-num>10.1016/j.talanta.2006.01.013</electronic-resource-num></record></Cite></EndNote>[\o"Wang,2006#408"23]等有机化合物的提取中也已有应用。尽管非离子型表面活性剂的商品化非常广泛,但在分析萃取应用中,烷基酚乙氧基化物TritonX-114仍是使用的首选,其次是TritonX-100和烷基聚氧乙烯醚GenapolX-080。CPE被证明是一种操作简单,条件温和,提取效率高,成本低,有机试剂用量小的萃取方法,但不可避免的CPE也存在一些缺陷。主要表现在非离子表面活性剂黏度较大需要有机溶剂稀释后才能进样,大多含有紫外线发色团检测时产生强烈的背景干扰,这两方面使得CPE与多种检测器不匹配,也降低了待测物的检测限,另外受温度影响不适用于热不稳定分析物萃取检测。在大多数萃取应用中非离子表面活性剂浓度约为1%,生物样品中的应用浓度更高(3-10%)。由于浓缩因子与样品/超分子溶剂体积比直接相关,并且超分子溶剂体积主要取决于表面活性剂的含量百分比,因此使用水性非离子胶束超分子溶剂不会得到高的浓缩因子。检测限通常可达μgL-1级别,但依然不能满足许多分析物的应用要求。提高温度或者添加无机盐(Na2SO4,NH4SO4或NaCl)可以降低超分子溶剂的水含量,减少超分子溶剂体积,进而改善浓缩因子,但这种方式又会引发新的问题。图1.7浊点萃取过程示意图ADDINEN.CITE<EndNote><Cite><Author>More</Author><Year>2019</Year><RecNum>168</RecNum><DisplayText>[48]</DisplayText><record><rec-number>168</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">168</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>More,P.R.</author><author>Arya,S.S.</author></authors></contributors><titles><title>Anovel,greencloudpointextractionandseparationofphenolsandflavonoidsfrompomegranatepeel:anoptimizationstudyusingRCCD</title><secondary-title>JournalofEnvironmentalChemicalEngineering</secondary-title></titles><periodical><full-title>JournalofEnvironmentalChemicalEngineering</full-title></periodical><pages>103306</pages><volume>7</volume><number>5</number><dates><year>2019</year></dates><isbn>22133437</isbn><urls></urls><electronic-resource-num>10.1016/j.jece.2019.103306</electronic-resource-num></record></Cite></EndNote>[\o"More,2019#168"48]Figure1.7Schematicdiagramofcloudpointextractionprocedure.1.2基于离子型表面活性剂的超分子溶剂基于离子型表面活性剂的超分子溶剂是由单一的阴离子、阳离子或混合的阴阳离子表面活性剂自组装成的聚集体凝聚而成。它们提供了具有不同极性的区域,这些区域具有在宽的极性范围溶解溶质的潜力。非极性分析物通过疏水作用或聚集体形成作用(溶质参与形成聚集体)被溶解到烃区域中,极性或带电的分析物可以通过多种相互作用(如静电、π-阳离子、氢键等)被溶解在极性区域中。离子型表面活性剂在溶液中能自组装形成胶束或囊泡,但由于静电斥力作用,阻碍了进一步的凝聚ADDINEN.CITEADDINEN.CITE.DATA[\o"Kukusamude,2016#173"50]。仅温度升高并不能使其分相,通常需要添加无机盐、酸或者不良溶剂来诱导超分子溶剂的形成。但这一性质也使超分子溶剂可在室温下形成,解决了非离子型超分子溶剂受温度限制的缺点。这种高盐、高酸的条件也对于处理复杂的环境固体样品如土壤、污泥和沉积物是非常有利的,这可能是基于离子交换的机制,酸性介质有利于分析物形成阳离子复合物被表面带负电的胶束从固体样品中解吸ADDINEN.CITEADDINEN.CITE.DATA[\o"Luque,2007#171"51]。这种情况常见于单一阴离子或混合阴阳离子表面活性剂超分子溶剂萃取应用中。另外,大多数离子型表面活性剂不含紫外发射基团,与非离子型相比,离子型表面活性剂超分子溶剂背景干扰小。1.2.1基于阴离子表面活性剂的超分子溶剂1999年,Pérez-Bendito等人ADDINEN.CITE<EndNote><Cite><Author>Casero</Author><Year>1999</Year><RecNum>155</RecNum><DisplayText>[12]</DisplayText><record><rec-number>155</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">155</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>I.Casero</author><author>D.Sicilia</author><author>S.Rubio</author><author>D.Pérez-Bendito</author></authors></contributors><titles><title>Anacid-inducedphasecloudpointseparationapproachusinganionicsurfactantsfortheextractionandpreconcentrationoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>4519-4526</pages><volume>71</volume><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[\o"Casero,1999#155"12]首次报道了十二烷基硫酸钠(SDS)、十二烷基磺酸钠(SDSA)等四种阴离子表面活性剂溶液在室温条件下,由盐酸诱导发生液-液分相行为,产生基于阴离子表面活性剂的超分子溶剂。盐酸的加入使得表面活性剂中硫酸根和磺酸根均质子化,表现出非离子表面活性剂的性质。研究表明,虽然加盐(NaCl)和升高温度可以大大提高SUPRAS区域的范围,但盐酸的存在依然是形成超分子溶剂的必要条件。由SDSA组成的阴离子胶束在盐酸(浓度范围2.5-5M)的加入产生超分子溶剂,已被证明能有效地提取环境水和固体样品中疏水性ADDINEN.CITE<EndNote><Cite><Author>Merino</Author><Year>2002</Year><RecNum>424</RecNum><DisplayText>[52]</DisplayText><record><rec-number>424</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">424</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Merino,F.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Acid-inducedcloudpointextractionandpreconcentrationofpolycyclicaromatichydrocarbonsfromenvironmentalsolidsamples</title><secondary-title>JournalofChromatographyA</secondary-title></titles><periodical><full-title>JournalofchromatographyA</full-title><abbr-1>JournalofchromatographyA</abbr-1></periodical><pages>1-8</pages><volume>962</volume><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[\o"Merino,2002#424"52]和两亲性ADDINEN.CITE<EndNote><Cite><Author>Cantero</Author><Year>2004</Year><RecNum>425</RecNum><DisplayText>[53]</DisplayText><record><rec-number>425</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">425</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Cantero,M.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><auth-address>DepartmentofAnalyticalChemistry,FacultaddeCiencias,EdificioAnexoMarieCurie,CampusdeRabanales,14071-Cordoba,Spain.</auth-address><titles><title>Determinationofnon-ionicpolyethoxylatedsurfactantsinsewagesludgebycoacervativeextractionandiontrapliquidchromatography-massspectrometry</title><secondary-title>JournalofChromatographyA</secondary-title><alt-title>Journalofchromatography.A</alt-title></titles><periodical><full-title>JournalofchromatographyA</full-title><abbr-1>JournalofchromatographyA</abbr-1></periodical><alt-periodical><full-title>JChromatogrA</full-title><abbr-1>Journalofchromatography.A</abbr-1></alt-periodical><pages>147-53</pages><volume>1046</volume><number>1-2</number><keywords><keyword>AtmosphericPressure</keyword><keyword>MassSpectrometry/*methods</keyword><keyword>SensitivityandSpecificity</keyword><keyword>Sewage/*chemistry</keyword><keyword>Surface-ActiveAgents/*analysis</keyword></keywords><dates><year>2004</year><pub-dates><date>Aug13</date></pub-dates></dates><isbn>0021-9673(Print) 0021-9673(Linking)</isbn><accession-num>15387183</accession-num><urls><related-urls><url>/pubmed/15387183</url></related-urls></urls><electronic-resource-num>10.1016/j.chroma.2004.06.073</electronic-resource-num></record></Cite></EndNote>[\o"Cantero,2004#425"53]的污染物。2006年,Pérez-Bendito等人ADDINEN.CITE<EndNote><Cite><Author>Ruiz</Author><Year>2006</Year><RecNum>181</RecNum><DisplayText>[54]</DisplayText><record><rec-number>181</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">181</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ruiz,F.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Tetrabutylammonium-inducedcoacervationinvesicularsolutionsofalkylcarboxylicacidsfortheextractionoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>7229-7239</pages><volume>78</volume><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[\o"Ruiz,2006#181"54]首次开发了基于长链烷酸-四丁基铵的囊泡型超分子溶剂。其分相机理主要有两方面,首先烷基酸和四丁基铵在水溶液中电离,形成烷基酸阴离子(CnCOO-)和四丁基铵阳离子(Bu4N+),Bu4N+与CnCOO-产生静电相互作用,中和了胶束表面的静电斥力导致聚集;其次Bu4N+与阴离子胶束结合后,由于烷基链间的疏水相互作用会诱导胶束在水溶液中进行连续自组装,最终形成内外均为亲水基团的囊泡结构(如图1.8A所示)ADDINEN.CITE<EndNote><Cite><Author>Ballesteros-Gómez</Author><Year>2019</Year><RecNum>182</RecNum><DisplayText>[55]</DisplayText><record><rec-number>182</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">182</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ballesteros-Gómez,A.</author><author>Caballero-Casero,N.</author><author>García-Fonseca,S.</author><author>Lunar,L.</author><author>Rubio,S.</author></authors></contributors><auth-address>DepartmentofAnalyticalChemistry,InstituteofFineChemistryandNanochemistry,CampusofRabanales,UniversidaddeCordoba,14071,Cordoba,Spain. DepartmentofAnalyticalChemistry,InstituteofFineChemistryandNanochemistry,CampusofRabanales,UniversidaddeCordoba,14071,Cordoba,Spain.Electronicaddress:a42caasn@uco.es.</auth-address><titles><title>Multifunctionalvesicularcoacervatesasengineeredsupramolecularsolventsforwastewatertreatment</title><secondary-title>Chemosphere</secondary-title><alt-title>Chemosphere</alt-title></titles><periodical><full-title>Chemosphere</full-title><abbr-1>Chemosphere</abbr-1></periodical><alt-periodical><full-title>Chemosphere</full-title><abbr-1>Chemosphere</abbr-1></alt-periodical><pages>569-576</pages><volume>223</volume><keywords><keyword>HydrophobicandHydrophilicInteractions</keyword><keyword>Solvents/*chemistry</keyword><keyword>WasteWater/*chemistry</keyword></keywords><dates><year>2019</year><pub-dates><date>May</date></pub-dates></dates><isbn>1879-1298(Electronic) 0045-6535(Linking)</isbn><accession-num>30797166</accession-num><urls><related-urls><url>/pubmed/30797166</url></related-urls></urls><electronic-resource-num>10.1016/j.chemosphere.2019.02.089</electronic-resource-num></record></Cite></EndNote>[\o"Ballesteros-Gómez,2019#182"55]。四丁基铵-烷酸体系的pH耐受范围相对较宽,在5-10之间。2007年,该课题组ADDINEN.CITE<EndNote><Cite><Author>Ruiz</Author><Year>2007</Year><RecNum>187</RecNum><DisplayText>[14]</DisplayText><record><rec-number>187</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">187</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ruiz,F.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Water-inducedcoacervationofalkylcarboxylicacidreversemicelles:phenomenondescriptionandpotentialfortheextractionoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>7473-7484</pages><volume>79</volume><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>[\o"Ruiz,2007#187"14]又提出了一种基于烷酸-四氢呋喃(THF)的超分子溶剂,THF作为有机溶剂,起到使长链烷酸在水溶液中溶解并分散的作用。后续本课题组也开发了基于烷酸-六氟异丙醇(HFIP)的新型超分子溶剂ADDINEN.CITEADDINEN.CITE.DATA[\o"Zong,2018#19"20],HFIP除了作为有机溶剂,由于其强氢键供体能力和疏水性,也参与聚集体的形成。THF/HFIP诱导的超分子溶剂具有反相胶束结构(如图1.8B),由于烷酸分子在中性和碱性条件下易电离,因此烷酸-THF/HFIP超分子溶剂制备时需要控制溶液酸性环境(pH<4)。四丁基铵和THF诱导的超分子溶剂的密度比水小,静置或离心后,位于体系上层,而HFIP诱导的超分子溶剂密度比水大,形成于体系的下层。基于烷酸的超分子溶剂黏度低,萃取条件温和,萃取体积小,浓缩倍数高,除提供静电、π-阳离子、疏水相互作用外,烷基羧酸的极性基团既是氢键供体又是受体,有利于通过氢键相互作用提高极性化合物的提取率。图1.8基于烷酸的超分子溶剂结构ADDINEN.CITE<EndNote><Cite><Author>Ruiz</Author><Year>2006</Year><RecNum>181</RecNum><DisplayText>[14,54]</DisplayText><record><rec-number>181</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">181</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ruiz,F.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Tetrabutylammonium-inducedcoacervationinvesicularsolutionsofalkylcarboxylicacidsfortheextractionoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>7229-7239</pages><volume>78</volume><dates><year>2006</year></dates><urls></urls></record></Cite><Cite><Author>Ruiz</Author><Year>2007</Year><RecNum>187</RecNum><record><rec-number>187</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">187</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ruiz,F.</author><author>Rubio,S.</author><author>Pérez-Bendito,D.</author></authors></contributors><titles><title>Water-inducedcoacervationofalkylcarboxylicacidreversemicelles:phenomenondescriptionandpotentialfortheextractionoforganiccompounds</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>7473-7484</pages><volume>79</volume><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>[\o"Ruiz,2007#187"14,\o"Ruiz,2006#181"54]Figure1.8Thestructureofsupramolecularsolventbasedonalkanoicacid.1.2.2基于阳离子表面活性剂的超分子溶剂Jin等人ADDINEN.CITE<EndNote><Cite><Author>X.Jin</Author><Year>1999</Year><RecNum>428</RecNum><DisplayText>[56]</DisplayText><record><rec-number>428</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">428</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>X.Jin,</author><author><styleface="normal"font="default"charset="128"size="100%">M</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Zhu,</style></author><author><styleface="normal"font="default"charset="128"size="100%">Conte</style><styleface="normal"font="default"charset="134"size="100%">,</style><styleface="normal"font="default"size="100%">E.D.</style></author></authors></contributors><titles><title>Surfactant-mediatedextractiontechniqueusingalkyltrimethylammoniumsurfactants:extractionofselectedchlorophenolsfromriverwater</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>514-517</pages><volume>71</volume><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[\o"X.Jin,1999#428"56]使用基于烷基三甲基溴化铵表面活性剂的超分子溶剂从河水中提取氯酚,此过程需要有助表面活性剂(辛醇)和高含量的NaCl(400gL-1)。之后陆续开发了阳离子表面活性剂与非离子表面活性剂混合使用形成超分子溶剂。如十六烷基三甲基溴化铵(cetyltrimethylammoniumbromide,CTAB)与TritonX-114作为混合胶束萃取剂,在10mM磷酸盐缓冲液(pH=8)中添加7%(w/v)Na2SO4,40oC时萃取牛奶中的青霉素残留ADDINEN.CITEADDINEN.CITE.DATA[\o"Kukusamude,2010#429"57];CTAB与TritonX-114混合胶束溶液中添加0.2MNa2SO4,在40oC水浴条件下萃取河水与井水中的硝基爆炸物。SupalaxSrijaranai等人ADDINEN.CITEADDINEN.CITE.DATA[\o"Kukusamude,2016#173"50]开发了单链阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)和双链阳离子表面活性剂双十二烷基二甲基溴化铵(didodecyldimethylazaniumbromide,DDAB)混合使用进行的萃取,其显着特征是在环境温度下使用低浓度的盐(0.1MNaBr),而无需有机溶剂。相分离发生的主要原因是由于与共同抗衡离子(Br-)发生静电相互作用而中和了胶束表面电荷。1.2.3基于阴阳离子复配表面活性剂的超分子溶剂1989年Kaler课题组ADDINEN.CITE<EndNote><Cite><Author>E.W.Kaler</Author><Year>1989</Year><RecNum>430</RecNum><DisplayText>[58]</DisplayText><record><rec-number>430</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">430</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>E.W.Kaler,</author><author>A.K.Murthy,</author><author>B.E.Rodriguez</author><author>J.A.N.Zasadzinski</author></authors></contributors><titles><title>Spontaneousvesicleformationinaqueousmixturesofsingle-tailedsurfactants</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>1371-1374</pages><volume>245</volume><dates><year>1989</year></dates><urls></urls></record></Cite></EndNote>[\o"E.W.Kaler,1989#430"58]首次报道了单链的阴离子表面活性剂十二烷基苯磺酸钠(SDBSA)和阳离子表面活性剂十六烷基三甲基甲苯磺酸(cetyltrimethylammoniumtosylate,CTAT)混合后在水溶液中可以自发的形成囊泡结构,由此阴阳离子表面活性剂复配体系(cationicandanionicsurfactantssystem,CASS)开始进入研究者的视线,对其丰富的相行为及其微观结构做了大量研究。由于带相反电荷头基间的强静电相互作用和烷烃链间疏水作用,CASS可以形成不同类型的胶束(包括球形、棒状、蠕虫状等),层状(包括囊泡、平面双分子层)或连续海绵状结构等。CASS可分为有盐型和无盐型两类。(1)基于有盐型阴阳离子表面活性剂复配超分子溶剂有盐型阴阳离子表面活性剂复配体系(salt-containingcationicandanionicsurfactantssystem,SC-CASS)是一类阴离子、阳离子表面活性剂混合时其对离子在溶液中形成无机盐的体系。如广泛研究的烷基硫酸钠与烷基三甲基溴化铵在水溶液中,对离子形成溴化钠盐。SC-CASS在低表面活性剂浓度时,阴离子和阳离子表面活性剂头基间产生强烈的静电相互作用头基的平均横截面积减小,导致容易自发的形成热力学稳定的囊泡结构。但在高表面活性剂总浓度或者两种表面活性剂在等摩尔比时,SC-CASS容易生成沉淀,主要原因有两点,一是带相反电荷的头基产生静电作用,相互吸引,产生更致密的聚集体结构,导致水溶性降低;二是溶液中高浓度盐会屏蔽聚集体的表面电荷,胶体间的静电斥力消失,导致持续聚集,囊泡结构崩塌形成沉淀ADDINEN.CITE<EndNote><Cite><Author>J.Hao</Author><Year>2003</Year><RecNum>431</RecNum><DisplayText>[59]</DisplayText><record><rec-number>431</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">431</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>J.Hao,</author><author><styleface="normal"font="default"charset="128"size="100%">W</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Liu,</style></author><author><styleface="normal"font="default"charset="128"size="100%">G</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Xu,</style></author><author><styleface="normal"font="default"charset="128"size="100%">L</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Zheng</style></author></authors></contributors><titles><title>Vesiclesfromsalt-freecationicandanionicsurfactantsolutions</title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>10635-10640</pages><volume>19</volume><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[\o"J.Hao,2003#431"59]。Kaler等人ADDINEN.CITE<EndNote><Cite><Author>Yatcilla</Author><Year>1996</Year><RecNum>411</RecNum><DisplayText>[25]</DisplayText><record><rec-number>411</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">411</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yatcilla,M.T.</author><author><styleface="normal"font="default"charset="128"size="100%">Herrington,</style><styleface="normal"font="default"charset="134"size="100%"></style><styleface="normal"font="default"size="100%">K.L.</style></author><author><styleface="normal"font="default"charset="128"size="100%">Brasher,</style><styleface="normal"font="default"size="100%">L</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"size="100%">L.</style></author><author><styleface="normal"font="default"charset="128"size="100%">Kaler</style><styleface="normal"font="default"charset="134"size="100%">,</style><styleface="normal"font="default"size="100%">E.W.</style></author></authors></contributors><titles><title>Phasebehaviorofaqueousmixturesofcetyltrimethylammoniumbromide(CTAB)andsodiumoctylsulfate(SOS)</title><secondary-title>JournalofPhysicalChemistry</secondary-title></titles><periodical><full-title>JournalofPhysicalChemistry</full-title></periodical><pages>5874-5879</pages><volume>100</volume><dates><year>1996</year></dates><urls></urls></record></Cite></EndNote>[\o"Yatcilla,1996#411"25]用低温透射电子显微镜观察十六烷基三甲基溴化铵(CTAB)和辛基硫酸钠(sodiumoctylsulfate,SOS)混合物的聚集形态和相行为,发现在富含CTAB和富含SOS的溶液中,囊泡在很宽的组成范围内自发形成,而两条疏水链的长度差异有利于产生囊泡结构的稳定性。在较高的总表面活性剂浓度下,可发生由棒状胶束到囊泡的转变,并发生相分离,这种转变发生在富含CTAB或SOS的溶液中。此外,Huang课题组ADDINEN.CITE<EndNote><Cite><Author>H.Yin</Author><Year>2002</Year><RecNum>404</RecNum><DisplayText>[11]</DisplayText><record><rec-number>404</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">404</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>H.Yin,</author><author>M.Mao,</author><author>J.Huang,</author><author>H.Fu,</author></authors></contributors><titles><title>Two-phaseregionintheDTAB/SLmixedsurfactantsystem</title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>9198-9203</pages><volume>18</volume><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[\o"H.Yin,2002#404"11]系统地研究了表面活性剂浓度和混合比、温度、盐浓度和添加剂(辛醇和甲苯)对十二烷基三甲基溴化铵(DTAB)/月桂酸钠(SL)水溶液相分离行为的影响。研究表明相分离现象很容易在SL/DTAB接近等摩尔比(从1:1.3到2.3:1)和总浓度大于0.02M(从0.02M到0.2M或更高)时产生。随后,Huang课题组ADDINEN.CITE<EndNote><Cite><Author>T.Lu</Author><Year>2008</Year><RecNum>432</RecNum><DisplayText>[60]</DisplayText><record><rec-number>432</rec-number><foreign-keys><keyapp="EN"db-id="f02aarrpvad9f9eve0m5d2zrvsz0d552vwtz">432</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>T.Lu,</author><author><styleface="normal"font="default"charset="128"size="100%">Z</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Li,</style></author><author><styleface="normal"font="default"charset="128"size="100%">J</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Huang,</style></author><author><styleface="normal"font="default"charset="128"size="100%">H</style><styleface="normal"font="default"charset="134"size="100%">.</style><styleface="normal"font="default"charset="128"size="100%">Fu</style></author></authors></contributors><titles><title>Aqueoussurfactanttwo-phasesystemsinamixtureofcationicgeminiandanionicsurfactants</title><secondary-title>Langmuir</secondary-title></titles><periodical><full-title>Langmuir</full-title></periodical><pages>10723-1072

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论