人教版七年级数学下学期相期末压轴题易错题检测试卷及答案_第1页
人教版七年级数学下学期相期末压轴题易错题检测试卷及答案_第2页
人教版七年级数学下学期相期末压轴题易错题检测试卷及答案_第3页
人教版七年级数学下学期相期末压轴题易错题检测试卷及答案_第4页
人教版七年级数学下学期相期末压轴题易错题检测试卷及答案_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图1,在直角坐标系中直线与、轴的交点分别为,,且满足.(1)求、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围.解析:(1),;(2)或;(3)【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a,b的值;(2)设直线AB与直线x=1交于点N,可得N(1,5),根据S△ABM=S△AMN−S△BMN,即可表示出S△ABM,从而列出m的方程.(3)根据题意知,临界状态是点P落在OA和AB上,分别求出此时t的值,即可得出范围.【详解】(1)∵,,∴,解得:,(2)设直线与直线交于,设∵a=−4,b=4,∴A(−4,0),B(0,4),设直线AB的函数解析式为:y=kx+b,代入得,解得∴直线AB的函数解析式为:y=x+4,代入x=1得∵∴=×5×|5−m|−×1×|5−m|=2|5−m|,∵∴∴或解得:或,(3)当点P在OA边上时,则2t=2,∴t=1,当点P在AB边上时,如图,过点P作PKx轴,AK⊥x轴交于K,则KP'=3−t,KA'=2t−2,∴3−t=2t−2,∴综上所述:.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.2.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.解析:(1)向左平移4个单位,再向下平移6个单位,,;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点在点的上方,点在点的下方,分别求解即可.【详解】解:(1)点,,又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,线段是由线段向左平移4个单位,再向下平移6个单位得到,,.(2).(3)连接.,,的中点坐标为在轴上,.,轴,同法可证,,,,同法可证,,,,当点在点的下方时,,,,,当点在点的上方时,.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.3.如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.解析:(1)图见解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为22.【分析】(1)直接利用平移画出图形,再根据图形写出对应点的坐标进而得出答案;(2)利用平移规律进而得出对应点坐标的变化规律:向上平移1个单位,纵坐标加1;向左平移2个单位,横坐标减2;(3)利用四边形ABCD所在的最小矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为:6×6-×2×6-×2×4-×2×4=22.【点睛】此题主要考查了平移变换以及坐标系内四边形面积求法,正确得出对应点位置是解题关键.4.如图,在平面直角坐标系中,四边形各顶点的坐标分别为,,,,现将四边形经过平移后得到四边形,点的对应点的坐标为.(1)请直接写点、、的坐标;(2)求四边形与四边形重叠部分的面积;(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由.解析:(1);(2);(3)存在,或【分析】(1)先确定平移的规则,然后根据平移的规则,求出点的坐标即可;(2)由平移的性质可知,重叠部分为平行四边形,且底边长为3,高为2,即可求出面积;(3)设点的坐标为,先求出平行四边形ABCD的面积,然后利用三角形的面积公式,即可求出b的值.【详解】解:(1)∵,,∴平移的规则为:向右平移2个单位,向上平移一个单位;∵,,,∴;(2)如图,延长交x轴于点E,过点做由平移可知,重叠部分为平行四边形,高为2,∴重叠部分的面积为(3)存在;设点的坐标为,∵,,∴,∴点的坐标为或.【点睛】本题考查了平移的性质,平行四边形的性质,坐标与图形,以及求阴影部分的面积,解题的关键是熟练掌握平移的性质进行解题.5.在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.①在运动过程中,求的面积与的面积之间的数量关系;②若,求的面积与的面积之比.解析:(1)55°或35°;(2)①;②.【解析】【分析】(1)分两种情况:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根据点在第二象限的角平分线上,得出∠POE=45°,对顶角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知条件,得出∠CEO=45°,又根据∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系;②首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比.【详解】(1)分两种情况:①令PC交x轴于点E,延长CB至x轴,交于点F,如图所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵点在第二象限的角平分线上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延长CB,交直线l于点E,由已知得,,∵点在第二象限的角平分线上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案为55°或35°.(2)如图,①设长方形向上平移个单位长,得到长方形∴②∵长方形,∴∵,令交于E,则四边形是平行四边形,∴∴又∵由①得知,∴∴.【点睛】此题主要考查等量转换和平行四边形的判定以及性质,熟练掌握,即可解题.6.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG=180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.7.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.8.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.9.已知,.点在上,点在上.(1)如图1中,、、的数量关系为:;(不需要证明);如图2中,、、的数量关系为:;(不需要证明)(2)如图3中,平分,平分,且,求的度数;(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EHAB,如图1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.10.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.11.如图1,//,点、分别在、上,点在直线、之间,且.(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.解析:(1);(2)的值为40°;(3).【分析】(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值.【详解】证明:过点O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:过点M作MK∥AB,过点N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,设∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO内,∴,∵∴∴即∴解得.经检验,符合题意,故答案为:.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.12.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.13.已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;(2)当点在的右侧时,,,满足数量关系为:;(3)①若当点在的左侧时,;当点在的右侧时,可求得;②结合①可得,由,得出;可得,由,得出.【详解】解:(1)如图1,过点作,,,,,,;(2)如图2,当点在的右侧时,,,满足数量关系为:;过点作,,,,,,;(3)①如图3,若当点在的左侧时,,,,分别平分和,,,;如图4,当点在的右侧

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论