四川省内江市威远中学2026届高二数学第一学期期末质量检测试题含解析_第1页
四川省内江市威远中学2026届高二数学第一学期期末质量检测试题含解析_第2页
四川省内江市威远中学2026届高二数学第一学期期末质量检测试题含解析_第3页
四川省内江市威远中学2026届高二数学第一学期期末质量检测试题含解析_第4页
四川省内江市威远中学2026届高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省内江市威远中学2026届高二数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F是双曲线C:的一个焦点,点P在C的渐近线上,O是坐标原点,,则的面积为()A.1 B.C. D.2.已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1 B.C. D.3.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.4.过点且与直线平行的直线方程是()A. B.C. D.5.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.6.已知等比数列的前n项和为,若,,则()A.250 B.210C.160 D.907.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.8.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△的顶点,,且,则△的欧拉线的方程为()A. B.C. D.10.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支11.已知抛物线:的焦点为,为上一点且在第一象限,以为圆心,为半径的圆交的准线于,两点,且,,三点共线,则()A.2 B.4C.6 D.812.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点且与直线垂直的直线方程为______14.过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为­.15.等差数列的前n项和分别为,若对任意正整数n都有,则的值为___________.16.在数列中,,,则数列中最大项的数值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).参考数据:65091.552.51478.630.5151546.5表中.(1)根据散点图判断与,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量,则有,;③取.18.(12分)已知函数,求函数在上的最大值与最小值.19.(12分)已知函数(1)当时,求的单调区间;(2)当时,证明:存在最大值,且恒成立.20.(12分)冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.应国务院要求,黑龙江某医院选派医生参加援鄂医疗,该院呼吸内科有3名男医生,2名女医生,其中李亮(男)为科室主任;该院病毒感染科有2名男医生,2名女医生,其中张雅(女)为科室主任,现在院方决定从两科室中共选4人参加援鄂医疗(最后结果用数字表达)(1)若至多有1名主任参加,有多少种派法?(2)若呼吸内科至少2名医生参加,有多少种派法?(3)若至少有1名主任参加,且有女医生参加,有多少种派法?21.(12分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.22.(10分)已知椭圆的左、右焦点分别为,,椭圆上一点满足,且的面积为(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,过点作直线的垂线.设直线交轴于,交轴于,且点,求的轨迹方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据给定条件求出,再利用余弦定理求出即可计算作答.【详解】双曲线C:中,,其渐近线,它与x轴的夹角为,即,在中,,由余弦定理得:,即,整理得:,解得,所以面积为.故选:B2、B【解析】根据平面向量共线的性质,结合抛物线的定义进行求解即可.【详解】由已知得:,该抛物线的准线方程为:,所以设,因为,所以,由抛物线的定义可知:,故选:B3、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D4、A【解析】由题意设直线方程为,根据点在直线上求参数即可得方程.【详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.5、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A6、B【解析】设为等比数列,由此利用等比数列的前项和为能求出结果【详解】设,等比数列的前项和为为等比数列,为等比数列,解得故选:B7、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A8、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D9、D【解析】由题设条件求出垂直平分线的方程,且△的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得,且中点为,∴垂直平分线的斜率,故垂直平分线方程为,∵,则△的外心、重心、垂心都在垂直平分线上,∴△的欧拉线的方程为.故选:D10、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D11、B【解析】根据,,三点共线,结合点到准线的距离为2,得到,再利用抛物线的定义求解.【详解】如图所示:∵,,三点共线,∴是圆的直径,∴,轴,又为的中点,且点到准线的距离为2,∴,由抛物线的定义可得,故选:B.12、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:14、【解析】双曲线的右焦点为.不妨设所作直线与双曲线的渐近线平行,其方程为,代入求得点的横坐标为,由,得,解之得,(舍去,因为离心率),故双曲线的离心率为.考点:1.双曲线的几何性质;2.直线方程.15、##0.68【解析】利用等差数列求和公式与等差中项进行求解.【详解】由题意得:,同理可得:,所以故答案为:16、【解析】用累加法求出通项,再由通项表达式确定最大项.【详解】当时,,所以数列中最大项的数值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);810公斤;(3).【解析】(1)根据散点图的变化趋势,结合给定模型的性质直接判断适合的模型即可.(2)将(1)中模型取对得,结合题设及表格数据求及参数,进而可得参数c,即可确定回归方程,进而估计时粮食亩产量y的值.(3)由题设知,结合特殊区间的概率值及正态分布的对称性求即可.【小问1详解】根据散点图,呈现非线性的变化趋势,故更适合作为关于的回归方程类型.【小问2详解】对两边取对数,得,即,由表中数据得:,,,则,∴关于的回归方程为,当时,,∴当化肥施用量为27公斤时,粮食亩产量约为810公斤.小问3详解】依题意,,则有,∴,则,∴这种化肥的有效率超过58%的概率约为.18、最大值为,最小值为【解析】利用导数可求得的单调性,进而可得极值,比较极值和端点值的大小即可求解.【详解】由可得:,则当时,;当时,;所以在上单调递减,在上单调递增,,又因为,,所以,综上所述:函数在上的最大值为,最小值为.19、(1)的单增区间为,;单减区间为,,;(2)证明见解析.【解析】(1)先求出函数的定义域,求出,由,结合函数的定义域可得出函数的单调区间.(2)当时,定义域R,求出,从而得出单调区间,由当时,,当时,,以及极值点与2的大小关系可得出当时,函数有最大值,然后再证明即可.【详解】解:(1)定义域,可得且且,,可得且3无0无0减无减增无增减所以,的单增区间为,;单减区间为,,.(2)当时,定义域R因为,当时,,当时,,所以的最大值在时取得;由,即,得由,得,或由,得所以在上单调递减,在上单调递增,在上单调递减.当时,,且,由所以当时,函数有最大值.所以,因为,所以,设,则所以化为由,则,则,所以所以20、(1)105种(2)105种(3)87种【解析】(1)至多有1名主任参加,包括两种情况:一种是无主任参加,另一种是只有1名主任参加,利用分类计数原理可得结果;(2)呼吸内科至少2名医生参加,分三种情况:第一种是呼吸内科2名医生参加,第二种呼吸内科3名医生参加,第三种呼吸内科4名医生参加,然后利用分类计数原理可得结果;(3)由于张雅既是主任,也是女医生.属于特殊元素,优先考虑,分有张雅和无张雅两种情况求解即可.【详解】(1)直接法:若无主任,若只有1名主任,共105种,间接法:(2)直接法:,间接法:(3)张雅既是主任,也是女医生.属于特殊元素,优先考虑,所以以是否有张雅来分类第一类:若有张雅,第二类:若无张雅,则李亮必定去,共87种【点睛】此题考查了分步和分类计数原理,正确分步和分类是解决此题的关键,属于中档题.21、(1)(2)证明见解析【解析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立MN方程和E的轨迹方程得根与系数的关系,根据解出k与m的关系即可以判断MN过定点;最后再考虑MN斜率不存在时是否也过该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论