河南省郑州市郑州一中2026届数学高一上期末经典试题含解析_第1页
河南省郑州市郑州一中2026届数学高一上期末经典试题含解析_第2页
河南省郑州市郑州一中2026届数学高一上期末经典试题含解析_第3页
河南省郑州市郑州一中2026届数学高一上期末经典试题含解析_第4页
河南省郑州市郑州一中2026届数学高一上期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省郑州市郑州一中2026届数学高一上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.2.不等式的解集为()A. B.C. D.3.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-14.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.5.已知向量(2,3),(x,2),且⊥,则|23|=()A.2 B.C.12 D.136.已知,,,则()A. B.C. D.7.已知,若,则m的值为()A.1 B.C.2 D.48.设函数,则下列结论不正确的是()A.函数的值域是;B.点是函数的图像的一个对称中心;C.直线是函数的图像的一条对称轴;D.将函数的图像向右平移个单位长度后,所得图像对应的函数是偶函数9.已知全集,集合,,则()A. B.C D.10.已知正实数满足,则的最小值是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则______.12.在下列四个函数中:①,②,③,④.同时具备以下两个性质:(1)对于定义域上任意x,恒有;(2)对于定义域上的任意、,当时,恒有的函数是______(只填序号)13.已知,,则________.(用m,n表示)14.函数的定义域是___________.15.已知角的终边经过点,且,则t的值为______16.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求;(2)已知,,,是第三象限角,求的值.18.设集合,语句,语句.(1)当时,求集合与集合的交集;(2)若是的必要不充分条件,求正实数的取值范围.19.英国数学家泰勒发现了如下公式:,其中,此公式有广泛的用途,例如利用公式得到一些不等式:当时,,.(1)证明:当时,;(2)设,若区间满足当定义域为时,值域也为,则称为的“和谐区间”.(i)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由;(ii)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由.20.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值21.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(直角三角形三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上(含线段两端点),已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】求圆心角的弧度数,再由弧长公式求弧长.【详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.2、D【解析】化简不等式并求解即可.【详解】将不等式变形为,解此不等式得或.因此,不等式解集为故选:D【点睛】本题考查一元二次不等式解法,考查学生计算能力,属于基础题.3、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B4、A【解析】由题意可得,从而得到常数k的值.【详解】由题意可得,∴,即∴故选:A5、D【解析】由,可得,由向量加法可得,再结合向量模的运算即可得解.【详解】解:由向量(2,3),(x,2),且,则,即,即,所以,所以,故选:D.【点睛】本题考查了向量垂直的坐标运算,重点考查了向量加法及模的运算,属基础题.6、C【解析】求出集合,利用交集的定义可求得集合.【详解】已知,,,则,因此,.故选:C.7、B【解析】依题意可得,列方程解出【详解】解:,,故选:8、B【解析】根据余弦函数的性质一一判断即可;【详解】解:因为,,所以,即函数的值域是,故A正确;因为,所以函数关于对称,故B错误;因为,所以函数关于直线对称,故C正确;将函数的图像向右平移个单位长度得到为偶函数,故D正确;故选:B9、C【解析】根据集合补集和交集运算方法计算即可.【详解】表示整数集Z里面去掉这四个整数后构成的集合,∴.故选:C.10、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.二、填空题:本大题共6小题,每小题5分,共30分。11、16或-2【解析】讨论和两种情况讨论,解方程,求的值.【详解】当时,,成立,当时,,成立,所以或.故答案为:或12、③④【解析】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.分别判断四个函数的单调性和奇偶性即可.【详解】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.①,f(x)奇函数,在定义域不单调;②,f(x)是偶函数,在定义域R内不单调;③,f(x)是奇函数,且在定义域R上单调递减;④,满足为奇函数,且根据指数函数性质可知其在定义域R上为减函数.综上,满足条件(1)(2)的函数有③④.故答案为:③④.13、【解析】根据指数式与对数式的互化,以及对数的运算性质,准确运算,即可求解.【详解】因为,,所以,,所以,可得.故答案为:14、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.15、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.16、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据诱导公式化简函数后代入求解即可;(2)根据同角三角函数的基本关系求出,利用两角差的余弦公式求解即可.【详解】(1)(2)由,,得又由,,得所以.18、(1);(2).【解析】(1)解一元二次不等式求集合A、B,应用集合的交运算求交集即可.(2)根据必要不充分关系有,即可求的范围.【小问1详解】由题设,,当时,所以;【小问2详解】由题设,,且,若是的必要不充分条件,则,又a为正实数,即,解得,故的取值范围为.19、(1)证明见解析(2)(i)不存在“和谐区间”,理由见解析(ii)存在,有唯一的“和谐区间”【解析】(1)利用来证得结论成立.(2)(i)通过证明方程只有一个实根来判断出此时不存在“和谐区间”.(ii)对的取值进行分类讨论,结合的单调性以及(1)的结论求得唯一的“和谐区间”.【小问1详解】由已知当时,,得,所以当时,.【小问2详解】(i)时,假设存在,则由知,注意到,故,所以在单调递增,于是,即是方程的两个不等实根,易知不是方程的根,由已知,当时,,令,则有时,,即,故方程只有一个实根0,故不存在“和谐区间”.(ii)时,假设存在,则由知若,则由,知,与值域是矛盾,故不存在“和谐区间”,同理,时,也不存在,下面讨论,若,则,故最小值为,于是,所以,所以最大值为2,故,此时的定义域为,值域为,符合题意.若,当时,同理可得,舍去,当时,在上单调递减,所以,于是,若即,则,故,与矛盾;若,同理,矛盾,所以,即,由(1)知当时,,因为,所以,从而,,从而,矛盾,综上所述,有唯一的“和谐区间”.【点睛】对于“新定义”的题目,关键是要运用新定义的知识以及原有的数学知识来进行求解.本题有两个“新定义”,一个是泰勒发现的公式,另一个是“和谐区间”.泰勒发现的公式可以直接用于证明,“和谐区间”可转化为函数的单调性来求解.20、a=-1或a=2【解析】函数的对称轴是,根据与区间的关系分类讨论得最大值,由最大值求得【详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=(舍去)(3)当a>1时,f(x)max=f(1)=a,∴a=2综上可知,a=-1或a=2【点睛】关键点点睛:本题考查二次函数最值问题.二次函数在区间最值问题,一般需要分类讨论,分类标准是对称轴与区间的关系,如果,求最小值时分三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论