版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北鸡泽县第一中学2026届高一数学第一学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限2.设,,,则,,的大小关系是()A. B.C. D.3.已知函数,则下列区间中含有的零点的是()A. B.C. D.4.在轴上的截距分别是,4的直线方程是A. B.C. D.5.已知函数(,且)的图象恒过点P,若角的终边经过点P,则()A. B.C. D.6.若,,且,则A. B.C. D.7.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.8.若函数的图像向左平移个单位得到的图像,则A. B.C. D.9.实数,,的大小关系正确的是()A. B.C. D.10.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当时,,则a的取值范围是________.12.已知,求________13.若在内无零点,则的取值范围为___________.14.三条直线两两相交,它们可以确定的平面有______个.15.已知正数x、y满足x+=4,则xy的最大值为_______.16.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数()若函数在上单调递减,求实数的取值范围()是否存在常数,当时,在值域为区间且?18.如图,已知圆的圆心在坐标原点,点是圆上的一点(Ⅰ)求圆的方程;(Ⅱ)若过点的动直线与圆相交于,两点.在平面直角坐标系内,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由19.已知集合,集合(1)当时,求;(2)当时,求m的取值范围20.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.21.已知函数是上的奇函数.(1)求实数a的值;(2)若关于的方程在区间上恒有解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题2、A【解析】根据指数函数与对数函数的图像与性质,结合中间量法,即可比较大小.【详解】由指数函数与对数函数的图像与性质可知综上可知,大小关系为故选:A【点睛】本题考查了指数函数与对数函数的图像与性质的应用,中间值法是比较大小常用方法,属于基础题.3、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】由于函数为增函数,函数在和上均为增函数,所以,函数在和上均为增函数.对于A选项,当时,,,此时,,所以,函数在上无零点;对于BCD选项,当时,,,由零点存在定理可知,函数的零点在区间内.故选:C.4、B【解析】根据直线方程的截距式写出直线方程即可【详解】根据直线方程的截距式写出直线方程,化简得,故选B.【点睛】本题考查直线的截距式方程,属于基础题5、A【解析】由题可得点,再利用三角函数的定义即求.【详解】令,则,所以函数(,且)的图象恒过点,又角的终边经过点,所以,故选:A.6、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一个根,b是方程的另一个根由韦达定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=−6,即b=−8,∴2×b=−16=−q,∴q=16∴p+q=21故选:A7、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.8、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.9、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:12、【解析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【详解】∵,∴,,,∴,∴故答案为:13、【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围.【详解】因为函数在内无零点,所以,所以;由,得,所以或,由,得;由,得;由,得,因为函数在内无零点,所以或或,又因为,所以取值范围为.故答案为:.14、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;15、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.16、【解析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)存在常数,,满足条件【解析】(1)结合二次函数的对称轴得到关于实数m的不等式,求解不等式可得实数的取值范围为(2)在区间上是减函数,在区间上是增函数.据此分类讨论:①当时,②当时,③当,综上可知,存在常数,,满足条件试题解析:()∵二次函数的对称轴为,又∵在上单调递减,∴,,即实数的取值范围为()在区间上是减函数,在区间上是增函数①当时,在区间上,最大,最小,∴,即,解得②当时,在区间上,最大,最小,∴,解得③当,在区间上,最大,最小,∴,即,解得或,∴综上可知,存在常数,,满足条件点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)设圆的方程为,将代入,求得,从而可得结果;(Ⅱ)先设,由可得,再证明对任意,满足即可,,则利用韦达定理可得,,由角平分线定理可得结果.【详解】(Ⅰ)设圆的方程为,将代入,求得,所以圆的方程为;(Ⅱ)先设,,由由(舍去)再证明对任意,满足即可,由,则则利用韦达定理可得,化为所以,由角平分线定理可得,即存在与点不同的定点,使得恒成立,.【点睛】本题主要考查待定系数法求圆方程及韦达定理、直线和圆的位置关系及曲线线过定点问题.属于难题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.19、(1);(2).【解析】(1)利用集合的交运算求即可.(2)根据已知,由集合的交集结果可得,即可求m的取值范围【小问1详解】由题设,,而,∴.【小问2详解】由,显然,∴,可得.20、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法.21、(1)(2)【解析】(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年梧州职业学院单招职业倾向性考试题库附答案解析
- 2023年浙江省台州市单招职业适应性考试题库附答案解析
- 2023年松原职业技术学院单招职业倾向性测试题库附答案解析
- 2024年贵州装备制造职业学院单招职业适应性测试模拟测试卷附答案解析
- 2025年宁夏中 卫 市单招职业倾向性考试模拟测试卷附答案解析
- 2025年兰州职业技术学院单招职业技能测试模拟测试卷附答案解析
- 2025年西安高新科技职业学院单招职业技能测试模拟测试卷附答案解析
- 2023年浙江舟山群岛新区旅游与健康职业学院单招职业技能考试模拟测试卷附答案解析
- 2025年襄阳科技职业学院单招职业技能考试模拟测试卷附答案解析
- 2025年湖南省娄底地区单招职业倾向性测试模拟测试卷附答案解析
- 中建钢筋工程优化技术策划指导手册 (一)
- 12J12无障碍设施图集
- 百菌齐发-开启菇粮时代知到智慧树章节测试课后答案2024年秋汉中职业技术学院
- 膦甲酸钠的医药市场分析与展望
- 电力市场概论张利课后参考答案
- 超市防损培训课件
- 2024年福建省2024届高三3月省质检(高中毕业班适应性练习卷)英语试卷(含答案)
- 污水源热泵技术RBL北京瑞宝利热能科技有限公司
- 《精神病》4人搞笑小品剧本台词
- 工商银行全国地区码
- 锥齿轮加工工艺和夹具设计
评论
0/150
提交评论