版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
桂林市重点中学2026届数学高二上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.362.已知数列满足,,,前项和()A. B.C. D.3.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(如图1).其中“100”的两个“0”设计为两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切(如图2).已知,则由其中一个圆心向另一个小圆引的切线长与两大圆的公共弦长之比为()A. B.3C. D.4.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.5.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.6.曲线在处的切线如图所示,则()A.0 B.C. D.7.已知数列中,前项和为,且点在直线上,则=A. B.C. D.8.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.9.设函数在上单调递减,则实数的取值范围是()A. B.C. D.10.已知是公差为3的等差数列.若,,成等比数列,则的前10项和()A.165 B.138C.60 D.3011.若集合,,则A. B.C. D.12.等差数列中,,则前项的和()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线被圆所截得的弦长为2,则双曲线的离心率为___________.14.日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断増加.已知将吨水净化到纯净度为时所需费用(单位:元)为.则净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的___________倍,这说明,水的纯净度越高,净化费用增加的速度越___________(填“快”或“慢”).15.已知为坐标原点,、分别是双曲线的左、右顶点,是双曲线上不同于、的动点,直线、与轴分别交于点、两点,则________16.已知、双曲线的左、右焦点,A、B为双曲线上关于原点对称的两点,且满足,,则双曲线的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)求的单调区间;(2)当时,求证:在上恒成立18.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)当为何值时,最大,并求的最大值.19.(12分)已知椭圆C:过两点(1)求C的方程;(2)定点M坐标为,过C右焦点的直线与C交于P,Q两点,判断是否为定值?若是,求出该定值,若不是,请说明理由20.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,21.(12分)已知锐角的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,求外接圆面积的最小值.22.(10分)已知函数(其中a常数)(1)求的单调递增区间;(2)若,时,的最小值为4,求a的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【详解】甲最终获得冠军的概率,故选:B.2、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C3、C【解析】作出图形,进而根据勾股定理并结合圆与圆的位置关系即可求得答案.【详解】如示意图,由题意,,则,又,,所以,所以.故选:C.4、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B5、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C6、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.7、C【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,故选C考点:1、等差数列;2、数列求和8、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D9、B【解析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.10、A【解析】由等差数列的定义与等比数列的性质求得首项,然后由等差数列的前项和公式计算【详解】因为,,成等比数列,所以,所以,解得,所以故选:A11、A【解析】通过解不等式得出集合B,可以做出集合A与集合B的关系示意图,可得出选项.【详解】因为,解不等式即,所以或,所以集合,作出集合A与集合B的示意图如下图所示:所以:,故选A【点睛】本题考查集合间的交集运算,属于基础题.12、D【解析】利用等差数列下标和性质可求得,根据等差数列求和公式可求得结果.【详解】数列为等差数列,,解得:;.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、或2【解析】由圆的方程有圆心,半径为,讨论双曲线的焦点分别在x或y轴上对应的渐近线方程,根据已知及弦长与半径、弦心距的几何关系得到双曲线参数的齐次方程,即可求离心率.【详解】由题设,圆的标准方程为,即圆心,半径为,若双曲线为时,渐近线为且,所以圆心到双曲线渐近线的距离为,由弦长、弦心距、半径的关系知:,故,得:,又,所以,故.若双曲线为时,渐近线为且,所以圆心到双曲线渐近线的距离为,由弦长、弦心距、半径的关系知:,故,得:,又,所以,故.综上,双曲线的离心率为或2.故答案为:或2.14、①.②.快【解析】根据导数的概念可知净化所需费用的瞬时变化率即为函数的一阶导数,即先对函数求导,然后将和代入进行计算,再求,即可得到结果,进而能够判断水的纯净度越高,净化费用增加的速度的快慢【详解】由题意,可知净化所需费用的瞬时变化率为,所以,,所以,所以净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的倍;因为,可知水的纯净度越高,净化费用增加的速度越快.故答案为:,快.15、3【解析】求得坐标,设出点坐标,求得直线的方程,由此求得两点的纵坐标,进而求得.【详解】依题意,设,则,直线的方程为,则,直线的方程为,则,所以.故答案为:16、【解析】可得四边形为矩形,运用三角函数的定义可得,,由双曲线的定义和矩形的性质,可得,由离心率公式求解即可.【详解】、为双曲线的左、右焦点,可得四边形为矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案为:.【点睛】关键点点睛:得出四边形为矩形,利用双曲线的定义解决焦点三角形问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调减区间为,单调增区间为;(2)证明见解析.【解析】(1)求得,根据其正负,即可判断函数单调性从而求得函数单调区间;(2)根据题意,转化目标不等式为,分别构造函数,,利用导数研究其单调性,即可证明.【小问1详解】因为,故可得,又为单调增函数,令,解得,故当时,;当时,,故的单调减区间为,单调增区间为.【小问2详解】当时,,要证,即证,又,则只需证,即证,令,,当时,,单调递增,当时,,单调递减,故当时,取得最大值;令,,又为单调增函数,且时,,当时,,单调递减,当时,,单调递增,故当时,取得最小值.则,且当时,同时取得最小值和最大值,故,即,也即时恒成立.【点睛】本题考察利用导数求函数的单调区间,以及利用导数研究恒成立问题;处理本题的关键是合理转化目标式,属中档题.18、(1)(2)n为6或7;126【解析】(1)设等差数列的公差为d,利用等差数列的通项公式求解;(2)由,利用二次函数的性质求解.【小问1详解】解:设等差数列的公差为d,因为.所以,解得,所以;【小问2详解】,当或7时,最大,的最大值是126.19、(1);(2)为定值.【解析】(1)根据题意,列出的方程组,求解即可;(2)对直线的斜率是否存在进行讨论,当直线斜率存在时,设出直线的方程,联立椭圆方程,利用韦达定理,转化,求解即可.【小问1详解】因为椭圆过两点,故可得,解得,故椭圆方程为:.【小问2详解】由(1)可得:,故椭圆的右焦点的坐标为;当直线的斜率不存在时,此时直线的方程为:,代入椭圆方程,可得,不妨取,又,故.当直线的斜率存在时,设直线的方程为:,联立椭圆方程,可得:,设坐标为,故可得,则.综上所述,为定值.【点睛】本题考察椭圆方程的求解,以及椭圆中的定值问题;处理问题的关键是合理的利用韦达定理,将目标式进行转化,属中档题.20、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元21、(1)(2)【解析】(1)利用二倍角公式将已知转化为正弦函数,解一元二次方程可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市东方公证处招聘公证员助理、辅助人员备考题库完整答案详解
- 3D打印个性化缝合导板的设计与应用
- 2型糖尿病社区综合管理路径优化
- 2025年工作地在合川备考题库重庆一国企招聘及答案详解1套
- 2025年枫亭镇中心卫生院招聘编外工作人员备考题库及答案详解一套
- 2025年第十师北屯面向社会公开引进高层次事业编工作人员备考题库及答案详解一套
- 2025年资阳市人才发展集团有限公司诚聘3名项目人员备考题库带答案详解
- 灰色时尚商务总结汇报模板
- 2025年个旧市医共体卡房分院招聘备考题库及1套参考答案详解
- 2025年广州南沙人力资源发展有限公司招聘公办幼儿园编外工作人员备考题库及1套完整答案详解
- 编制竣工图合同范本
- 新22J01 工程做法图集
- 智慧树知到《艺术与审美(北京大学)》期末考试附答案
- 2024-2025学年上海市长宁区初三一模语文试卷(含答案)
- 钢管支撑强度及稳定性验算
- 全国医疗服务项目技术规范
- 人教版六年级数学下册全册教案
- 医院公共卫生事件应急处理预案
- 智慧校园云平台规划建设方案
- 机械制图公开课课件
- 内镜下治疗知情同意书
评论
0/150
提交评论