版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省珠海市2026届高一数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合M={x|x=×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么()A.M=N B.N⊆MC.M⊆N D.M∩N=∅2.定义在上的偶函数满足,且在上是减函数,若,是锐角三角形的两个内角,则下列各式一定成立的是()A. B.C. D.3.设,,,则A. B.C. D.4.已知函数,若存在互不相等的实数,,满足,则的取值范围是()A. B.C. D.5.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.6.的值是A. B.C. D.7.已知幂函数在上单调递减,则()A. B.5C. D.18.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.9.已知某棱锥的三视图如图所示,则该棱锥的表面积为A. B.C. D.10.设则的值为A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在区间上随机取一个实数,则事件发生的概率为_________.12.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________13.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______14.若,则的终边所在的象限为______15.函数在[1,3]上的值域为[1,3],则实数a的值是___________.16.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值(2)求18.如图,在四边形中,,,,且.(Ⅰ)用表示;(Ⅱ)点在线段上,且,求的值.19.已知函数(1)若在区间上有最小值为,求实数m的值;(2)若时,对任意的,总有,求实数m的取值范围20.已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数a的值.21.已知函数,,且.(1)求的值;(2)求的定义域;(3)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】变形表达式为相同的形式,比较可得【详解】由题意可即为的奇数倍构成的集合,又,即为的整数倍构成的集合,,故选C【点睛】本题考查集合的包含关系的判定,变形为同样的形式比较是解决问题的关键,属基础题2、A【解析】根据题意,先得到是周期为的函数,再由函数单调性和奇偶性,得出在区间上是增函数;根据三角形是锐角三角,得到,得出,从而可得出结果.【详解】因为偶函数满足,所以函数是周期为的函数,又在区间上是减函数,所以在区间上是减函数,因为偶函数关于轴对称,所以在区间上是增函数;又,是锐角三角形的两个内角,所以,即,因此,即,所以.故选:A.【点睛】本题主要考查由函数的基本性质比较大小,涉及正弦函数的单调性,属于中档题.3、B【解析】本题首先可以通过函数的性质判断出和的大小,然后通过对数函数的性质判断出与的大小关系,最后即可得出结果【详解】因为函数是增函数,,,所以,因为,所以,故选B【点睛】本题主要考查了指数与对数的相关性质,考查了运算能力,考查函数思想,体现了基础性与应用性,考查推理能力,是简单题4、D【解析】作出函数的图象,根据题意,得到,结合图象求出的范围,即可得出结果.【详解】假设,作出的图象如下;由,所以,则令,所以,由,所以,所以,故.故选:D.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6、B【解析】由余弦函数的二倍角公式把等价转化为,再由诱导公式进一步简化为,由此能求出结果详解】,故选B【点睛】本题考查余弦函数的二倍角公式的应用,解题时要认真审题,仔细解答,注意诱导公式的灵活运用,属于基础题.7、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.8、C【解析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【详解】由题意得:,即,两边取对数,,解得:.故选:C9、D【解析】根据三视图可知,几何体是一条侧棱垂直于底面的四棱锥,底面是边长为的正方形,如下图所示,该几何体的四个侧面均为直角三角形,侧面积,底面积,所以该几何体的表面积为,故选D.考点:三视图与表面积.【易错点睛】本题考查三视图与表面积,首先应根据三视图还原几何体,需要一定的空间想象能力,另外解本题时,也可以将几何体置于正方体中,这样便于理解、观察和计算.根据三视图求表面积一定要弄清点、线、面的平行和垂直关系,能根据三视图中的数据找出直观图中的数据,从而进行求解,考查学生空间想象能力和计算能力.10、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型12、【解析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围【详解】因为函数图像关于对称,所以函数是偶函数,所以可转化为因为当时,恒成立,所以函数在上为增函数,所以,解得,所以取值范围为,故答案为:13、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.14、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.15、【解析】分类讨论,根据单调性求值域后建立方程可求解.【详解】若,在上单调递减,则,不符合题意;若,在上单调递增,则,当值域为时,可知,解得.故答案为:16、4【解析】设扇形半径为,弧长为,则,解得考点:角的概念,弧度的概念三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】根据条件可解出与的值,再利用商数关系求解【小问1详解】,又,解得故【小问2详解】由诱导公式得18、(Ⅰ)(Ⅱ)【解析】Ⅰ直接利用向量的线性运算即可Ⅱ以O为坐标原点,OA所在的直线为x轴,建立如图所示的平面直角坐标系可得代入各值即可【详解】(Ⅰ)因为,所以.因为,所以(Ⅱ)因,所以.因为,所以点共线.因为,所以.以为坐标原点,所在的直线为轴,建立如图所示的平面直角坐标系.因为,,,所以.所以,.因为点在线段上,且,所以所以.因为,所以.【点睛】本题考查了向量的线性运算,向量夹角的计算,属于中档题19、(1)或;(2).【解析】(1)可知的对称轴为,讨论对称轴的范围求出最小值即可得出;(2)不等式等价于,求出最大值和最小值即可解出.【详解】(1)可知的对称轴为,开口向上,当,即时,,解得或(舍),∴当,即时,,解得,∴综上,或(2)由题意得,对,∵,,∴,∴,解得,∴【点睛】本题考查含参二次函数的最值问题,属于中档题.20、(1)(2)【解析】(1)若,求出集合、B,进而求出;(2)根据题意得到A是B的真子集,分A为空集和不为空集两种情况,求出a的取值范围.【小问1详解】若,则,,所以.【小问2详解】因为“”是“”的充分不必要条件,所以,①当时,即时,不满足互异性,不符合题意;②当时,即或时,由①可知,时,不符合题意,当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西安市雁塔区第一小学教师招聘备考题库带答案详解
- 初中生物概念建构中的多媒体资源运用与教学策略教学研究课题报告
- 2025年保定市宽高高级中学招聘备考题库及答案详解1套
- 2型糖尿病个体化治疗药物转换策略
- 国网浙江电力2026年度高校毕业生招聘1170人备考题库及一套参考答案详解
- 2025年大连海事大学公开招聘事业编制非教学科研人员23人(第一批)备考题库含答案详解
- 2025年河南实达国际人力资源合作有限公司招聘宋城产投劳务派遣人员备考题库有答案详解
- 2025年连山教师招聘29人备考题库完整参考答案详解
- 2025年上海大学诚聘法学院院长备考题库及答案详解参考
- 简约插画风深色年度晚会庆典
- 2025年榆林市住房公积金管理中心招聘(19人)备考笔试试题及答案解析
- 2025年金属非金属矿山(地下矿山)安全管理人员证考试题库含答案
- 2025秋苏教版(新教材)小学科学三年级上册知识点及期末测试卷及答案
- 2025年及未来5年中国非晶合金变压器市场深度分析及投资战略咨询报告
- 中文核心期刊论文模板(含基本格式和内容要求)
- 2024-2025学年云南省普通高中高二下学期期末学业水平合格性考试数学试卷
- GB/T 18213-2025低频电缆和电线无镀层和有镀层铜导体直流电阻计算导则
- 泰康人寿会计笔试题及答案
- 园林绿化养护项目投标书范本
- 烷基化装置操作工安全培训模拟考核试卷含答案
- 汽车租赁行业组织架构及岗位职责
评论
0/150
提交评论