版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省2026届高一上数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则A B.C. D.2.若直线与互相平行,则()A.4 B.C. D.3.已知幂函数的图象过点,则A. B.C.1 D.24.已知函数是定义域为的奇函数,且,当时,,则()A. B.C. D.5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC与A1D1所成的角是A.30° B.45°C.60° D.90°6.若角,则()A. B.C. D.7.若,,则的值为A. B.C. D.8.设两条直线方程分别为,,已知,是方程的两个实根,且,则这两条直线之间的距离的最大值和最小值分别是A. B.C. D.9.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}10.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆内接四边形是矩形二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数fx=log5x.若f12.已知在同一平面内,为锐角,则实数组成的集合为_________13.若,则________.14.已知函数,,则________15.如果,且,则化简为_____.16.已知向量,,,,则与夹角的余弦值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数在定义域内存在实数使成立,则称函数有“漂移点”.(1)函数是否有漂移点?请说明理由;(2)证明函数在上有漂移点;(3)若函数在上有漂移点,求实数的取值范围.18.某药物研究所开发了一种新药,根据大数据监测显示,病人按规定的剂量服药后,每毫升血液中含药量y(微克)与时间x(小时)之间的关系满足:前1小时内成正比例递增,1小时后按指数型函数y=max−1(m,a为常数,且0<a<1)图象衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.(1)当a=时,求函数y=f(x)的解析式,并求使得y≥1的x的取值范围;(2)研究人员按照M=的值来评估该药的疗效,并测得M≥时此药有疗效.若病人某次服药后测得x=3时每毫升血液中的含药量为y=8,求此次服药有疗效的时长.19.已知函数.(1)当时,求函数的值域;(2)若函数的值域为R,求实数取值范围.20.已知为奇函数,且(1)求的值;(2)判断在上的单调性,并用单调性定义证明21.参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数(1)①试解释与的实际意义;②写出函数应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:先解指数不等式得集合A,再根据偶次根式被开方数非负得集合B,最后根据补集以及交集定义求结果.详解:因为,所以,因为,所以因此,选C.点睛:合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图2、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.3、B【解析】先利用待定系数法求出幂函数的表达式,然后将代入求得的值.【详解】设,将点代入得,解得,则,所以,答案B.【点睛】主要考查幂函数解析式的求解以及函数值求解,属于基础题.4、A【解析】由奇偶性结合得出,再结合解析式得出答案.【详解】由函数是定义域为的奇函数,且,,而,则故选:A5、B【解析】在正方体ABCD﹣A1B1C1D1中,AC∥A1C1,所以为异面直线AC与A1D1所成的角,由此能求出结果.【详解】因为AC∥A1C1,所以为异面直线AC与A1D1所成的角,因为是等腰直角三角形,所以.故选:B【点睛】本题考查异面直线所成的角的求法,属于基础题.6、C【解析】分母有理化再利用平方关系和商数关系化简得解.【详解】解:.故选:C7、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础8、B【解析】两条直线之间的距离为,选B点睛:求函数最值,一般通过条件将函数转化为一元函数,根据定义域以及函数单调性确定函数最值9、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.10、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、1,2【解析】结合函数的定义域求出x的范围,分x=1,0<x<1以及1<x<2三种情况进行讨论即可.【详解】因为fx=log5x的定义域为0,+当x=1时,fx当0<x<1时,2-x>1,则fx<f2-x等价于log5x<log52-x,所以-当1<x<2时,0<2-x<1,则fx<f2-x等价于log5x<log52-x,所以log5x<-log5所以x的取值范围是1,2.故答案为:1,2.12、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.13、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:14、【解析】发现,计算可得结果.【详解】因为,,且,则.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.15、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:16、【解析】运用平面向量的夹角公式可解决此问题.【详解】根据题意得,,,,故答案为.【点睛】本题考查平面向量夹角公式的简单应用.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)没有,理由见解析;(2)证明见解析;(3).【解析】(1)根据给定定义列方程求解判断作答.(2)根据给定定义构造函数,由零点存在性定理判断函数的零点情况即可作答.(3)根据给定定义列方程,变形构造函数,利用函数有零点分类讨论计算作答.【小问1详解】假设函数有“漂移点”,则,此方程无实根,所以函数没有漂移点.【小问2详解】令,,则,有,即有,而函数在单调递增,因此,在上有一个实根,所以函数在上有漂移点.小问3详解】依题意,设在上的漂移点为,则,即,亦即,整理得:,由已知可得,令,,则在上有零点,当时,的图象的对称轴为,而,则,即,整理得,解得,则,当时,,0,则不成立,当时,,在上单调递增,又,则恒大于0,因此,在上没有零点.综上得,.【点睛】思路点睛:涉及一元二次方程的实根分布问题,可借助二次函数的图象及其性质,利用数形结合的方法解决问题.18、(1),(2)小时【解析】(1)根据图像求出解析式;令直接解出的取值范围;(2)先求出,得到,根据单调性计算出解集即可.【小问1详解】当时,与成正比例,设为,则;所以,当时,故当时,令解得:,当时,令得:,综上所述,使得的的取值范围为:【小问2详解】当时,,解得所以,则令,解得,由单调性可知的解集为,所以此次服药产生疗效的时长为小时19、(1);(2).【解析】(1)当时,,利用二次函数的性质求出真数部分的范围,根据对数函数的单调性可求出值域;(2)的值域为等价于的值域包含,故,即求.小问1详解】当时,,∵,∴,∴函数的值域;【小问2详解】要使函数的值域为R,则的值域包含,∴,解得或,∴实数取值范围为.20、(1);(2)递减,见解析【解析】(1)函数是奇函数,所以,得到,从而解得;(2)在区间上任取两个数,且,判断的符号,得到,由此证明函数的单调性.详解】(1)由题意知,则,解得;(2)函数在上单调递减,证明如下:在区间上任取两个数,且,因为,所以即,,所以即,函数在上单调递减.【点睛】本题考查由函数的奇偶性求参数,利用定义证明函数的单调性,属于基础题.21、(1)表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上残留的污渍的;定义域为,值域为,在区间内单调递减.(2)当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.【解析】(1)①根据函数的实际意义说明即可;②由实际意义可得出函数的定义域,值域,单调性.(2)求出两种清洗方法污渍的残留量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重彩长颈鹿课件
- 2026年投标考试题及答案
- 初二历史期末试卷及答案
- 2026年普希金考试题及答案
- 2025年判断神志考试题及答案
- 2025年初级焊工钳工试题及答案
- 2025年关于汾酒的试题及答案
- 猜表情课件教学课件
- 叉车考试题库及答案
- 财务管理题目及答案
- 人货电梯施工方案
- 南大版一年级心理健康第7课《情绪小世界》课件
- 光大金瓯资产管理有限公司笔试
- 算力产业园项目计划书
- 塔式起重机安全管理培训课件
- 老年髋部骨折快速康复治疗
- 【初中地理】跨学科主题学习探 索外来食料作物的传播史课件-2024-2025学年七年级上学期(人教版2024)
- 四川省南充市2024-2025学年高一地理上学期期末考试试题含解析
- 安徒生童话《枞树》
- 化学品管理控制程序
- 探索·鄱阳湖智慧树知到期末考试答案2024年
评论
0/150
提交评论