版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市2026届高一上数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“x0,x2x0”的否定是()A.x0,x2x0 B.x0,x2x0C.x0,x2x0 D.x0,x2x02.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.3.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,4.若函数且,则该函数过的定点为()A. B.C. D.5.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-226.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的()A.内心 B.外心C.重心 D.垂心7.设函数与的图象的交点为,,则所在的区间是A. B.C. D.8.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)9.设,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第二象限角,且,则_____12.已知函数,则函数的值域为______13.已知函数是幂函数,且时,单调递减,则的值为___________.14.幂函数为偶函数且在区间上单调递减,则________,________.15.已知函数,若存在,使得,则的取值范围为_____________.16.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知动圆经过点和(1)当圆面积最小时,求圆的方程;(2)若圆的圆心在直线上,求圆的方程.18.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.19.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.20.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断奇偶性,并求在区间上的值域.21.已知函数.(1)当时,用定义法证明函数在上是减函数;(2)已知二次函数满足,,若不等式恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题“x0,x2x0”的否定是:“x0,x2x0”.故选:B2、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.3、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.4、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.5、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.6、A【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分线上,故动点必过三角形的内心.【详解】如图,设,,已知均为单位向量,故四边形为菱形,所以平分,由得,又与有公共点,故三点共线,所以点在的角平分线上,故动点的轨迹经过的内心.故选:A.7、A【解析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A8、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.9、A【解析】解不等式,再判断不等式解集的包含关系即可.【详解】由得,由得,故“”是“”的充分不必要条件.故选:A.10、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.12、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.13、【解析】根据幂函数定义求出m的值,根据函数的单调性确定m的值,再利用对数运算即可.【详解】为幂函数,,解得:或当时,在上单调递增,不符合题意,舍去;当时,在上单调递减,符合题意;,故答案为:14、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.15、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.16、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以为直径的圆即为面积最小的圆,由此可以算出中点坐标和长度,即可求出圆的方程;(2)设出圆的标准方程,根据题意代入数值解方程组即可.【小问1详解】要使圆的面积最小,则为圆的直径,圆心,半径所以所求圆的方程为:.【小问2详解】设所求圆的方程为,根据已知条件得,所以所求圆的方程为.18、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解析】(1)五点法作图;(2)整体代入求对称轴,对称中心,单调递增区间.【小问1详解】列表:0010-10020-20描点画图:【小问2详解】求对称轴:,故函数的对称轴为求对称中心:,故函数的对称中心为求单调递增区间:,故函数的单调递增区间为:19、(1)(2)最大值为,最小值为【解析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.20、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所以在区间上的值域为.21、(1)证明见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年绵阳市事业单位公开选调工作人员25人备考题库有答案详解
- 5G+急诊急救的响应时效优化策略
- 2025年库尔勒公共停车场服务管理有限公司招聘备考题库及1套完整答案详解
- 3D打印技术在功能区脑肿瘤手术规划中的创新
- 2025年浙江省经济建设投资有限公司招聘5人备考题库及答案详解参考
- 2025年长江财产保险股份有限公司总精算师及相关部门负责人招聘备考题库及一套参考答案详解
- 新疆医科大学2025年高层次人才引进备考题库及1套参考答案详解
- 2025年成都市双流区东升第一初级中学招聘教师备考题库及参考答案详解一套
- 2025年黄山太平经济开发区投资有限公司公开招聘高管人员备考题库附答案详解
- 2025年苏州交投新基建科技有限公司公开招聘12名人员备考题库及一套参考答案详解
- 激光熔覆应用介绍
- 电除颤临床操作规范指南样本
- 教学《近似数》数学课件教案
- 2025年西昌市邛海泸山风景名胜区管理局招聘5名执法协勤人员备考题库完整参考答案详解
- 2025年中共湛江市委巡察服务保障中心、湛江市清风苑管理中心公开招聘事业编制工作人员8人备考题库完整参考答案详解
- 2025年产业融合发展与区域经济一体化进程研究可行性研究报告
- 医保科工作流程管理标准化方案
- 公路工程工点标准化管理指南
- 太阳能路灯采购安装方案投标文件(技术方案)
- 医院药学 试题及答案 模块十一药学信息服务题库
- 烟草证到期代办委托书
评论
0/150
提交评论