版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江安吉天略外国语学校高一上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递增区间为()A. B.C. D.2.已知向量,,且与的夹角为锐角,则的取值范围是A. B.C. D.3.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角4.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.5.函数的大致图象是A. B.C. D.6.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.157.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.8.的弧度数是()A. B.C. D.9.若,,,则有A. B.C. D.10.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.12.已知函数其中且的图象过定点,则的值为______13.已知点,若,则点的坐标为_________.14.已知函数,则的值等于______15.函数的定义域是__________.16.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期和单调区间;(2)求函数在上的值域.18.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.19.已知定义在上的奇函数.(1)求实数的值;(2)解关于的不等式20.已知幂函数为偶函数(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围21.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由解出范围即可.【详解】由,可得,所以函数的单调递增区间为,故选C.2、B【解析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B考点:本题主要考查平面向量的坐标运算,向量夹角公式点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0.3、A【解析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.4、D【解析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.5、D【解析】关于对称,且时,,故选D6、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积7、A【解析】将直线方程化为斜截式,由此求得正确答案.【详解】,所以.故选:A8、C【解析】弧度,弧度,则弧度弧度,故选C.9、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.10、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.12、1【解析】根据指数函数的图象过定点,即可求出【详解】函数其中且的图象过定点,,,则,故答案为1【点睛】本题考查了指数函数图象恒过定点的应用,属于基础题.13、(0,3)【解析】设点的坐标,利用,求解即可【详解】解:点,,,设,,,,,解得,点的坐标为,故答案为:【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题14、2【解析】由分段函数可得,从而可得出答案.【详解】解:由,得.故答案为:2.15、{|且}【解析】根据函数,由求解.【详解】因为函数,所以,解得,所以函数的定义域是{|且},故答案为:{|且}16、【解析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、⑴,递增区间,递减区间⑵【解析】整理函数的解析式可得:.(1)由最小正周期公式和函数的解析式求解最小正周期和单调区间即可.⑵结合函数的定义域和三角函数的性质可得函数的值域为.详解】.(1),递增区间满足:,据此可得,单调递增区间为,递减区间满足:,据此可得,单调递减区间为.(2),,,,的值域为.【点睛】本题主要考查三角函数的性质,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.18、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.19、(1)1;(2).【解析】(1)由奇函数的性质有,可求出的值,注意验证是否为奇函数.(2)根据函数的奇偶性、单调性可得,再结合对数函数的性质求解集.【小问1详解】因为是定义在上的奇函数,所以,解得,经检验是奇函数,即【小问2详解】由,得,又是定义在上的奇函数,所以,易知在上递增,所以,则,解得,所以原不等式的解集为20、(1);(2)或.【解析】(1)由为幂函数知,得或又因为函数为偶函数,所以函数不符合舍去当时,,符合题意;.(2)由(1)得,即函数的对称轴为,由题意知在(2,3)上为单调函数,所以或,即或.21、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天工新材料科技集团校招面试题及答案
- 特变电工集团招聘面试题及答案
- 2025-2030中国化肥行业市场格局深度分析及发展趋势报告
- 2025-2030中国化肥制造业市场供需分析及投资评估规划分析研究报告
- 2025-2030中国化工材料行业市场供需分析及技术进步评估规划研究报告
- 王君木兰诗课件
- 2024年西安高新第三中学教师招聘真题
- 2024年黑龙江艺术职业学院单招职业倾向性测试题库附答案解析
- 2025年内蒙古能源职业学院单招职业技能考试题库附答案解析
- 2023年石家庄信息工程职业学院单招职业适应性考试模拟测试卷附答案解析
- 2025年度龙门吊设备租赁期满后的设备回收与处置合同4篇
- 医疗器械经营管理制度目录
- 新疆大学答辩模板课件模板
- 个体工商户雇佣合同(2024版)
- 腹腔镜下胰十二指肠切除术的手术配合
- 最美的事800字作文
- 医院教学工作记录本
- 销售宝典输赢之摧龙六式课件
- 新时代创业思维知到章节答案智慧树2023年东北大学秦皇岛分校
- 重钢环保搬迁1780热轧宽带建设项目工程初步设计
- GB/T 19025-2023质量管理能力管理和人员发展指南
评论
0/150
提交评论