湖南省株洲市醴陵一中2026届高二数学第一学期期末质量检测模拟试题含解析_第1页
湖南省株洲市醴陵一中2026届高二数学第一学期期末质量检测模拟试题含解析_第2页
湖南省株洲市醴陵一中2026届高二数学第一学期期末质量检测模拟试题含解析_第3页
湖南省株洲市醴陵一中2026届高二数学第一学期期末质量检测模拟试题含解析_第4页
湖南省株洲市醴陵一中2026届高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市醴陵一中2026届高二数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F是双曲线C:的一个焦点,点P在C的渐近线上,O是坐标原点,,则的面积为()A.1 B.C. D.2.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.3.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.4.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④5.已知数列满足,,则的最小值为()A. B.C. D.6.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则7.已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()A B.C. D.8.若直线的方向向量为,平面的法向量为,则()A. B.C. D.与相交但不垂直9.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.10.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.11.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.1612.已知是边长为6的等边所在平面外一点,,当三棱锥的体积最大时,三棱锥外接球的表面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________14.已知直线:和:,且,则实数__________,两直线与之间的距离为__________15.不等式的解集是___________.16.关于曲线,则以下结论正确的个数有______个①曲线C关于原点对称;②曲线C中,;③曲线C是不封闭图形,且它与圆无公共点;④曲线C与曲线有4个交点,这4点构成正方形三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)我们知道,装同样体积的液体容器中,如果容器的高度一样,那么侧面所需的材料就以圆柱形的容器最省.所以汽油桶等装液体的容器大都是圆柱形的,某卧式油罐如图1所示,它垂直于轴的截面如图2所示,已知截面圆的半径是1米,弧的长为米表示劣弧与弦所围成阴影部分的面积.(1)请写出函数表达式;(2)用求导的方法证明.18.(12分)已知,(1)当时,求函数的单调递减区间;(2)当时,,求实数a的取值范围19.(12分)将离心率相同的两个椭圆如下放置,可以形成一个对称性很强的几何图形,现已知.(1)若在第一象限内公共点的横坐标为1,求的标准方程;(2)假设一条斜率为正的直线与依次切于两点,与轴正半轴交于点,试求的最大值及此时的标准方程.20.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和21.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程22.(10分)进入11月份,大学强基计划开始报名,某“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图2所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值和中位数;(每组数据用该组的区间中点值表示)(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加强基计划考试,若已知6名同学中有4名理科生,2名文科生,试求这3人中含文科生的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据给定条件求出,再利用余弦定理求出即可计算作答.【详解】双曲线C:中,,其渐近线,它与x轴的夹角为,即,在中,,由余弦定理得:,即,整理得:,解得,所以面积为.故选:B2、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来3、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.4、B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B5、C【解析】采用叠加法求出,由可得,结合对勾函数性质分析在或6取到最小值,代值运算即可求解.【详解】因为,所以,,,,式相加可得,所以,,当且仅当取到,但,,所以时,当时,,,所以的最小值为.故选:C6、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D7、B【解析】根据导数的几何意义,求出切线方程,求出切线和横截距a和纵截距b,面积为【详解】由题意可得,所以,则所求切线方程为令,得;令,得故所求三角形的面积为故选:B8、B【解析】通过判断直线的方向向量与平面的法向量的关系,可得结论【详解】因为,,所以,所以∥,因为直线的方向向量为,平面的法向量为,所以,故选:B9、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.10、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.11、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C12、C【解析】由题意分析可得,当时三棱锥的体积最大,然后作图,将三棱锥还原成正三棱柱,按照正三棱柱外接球半径的计算方法来计算,即可计算出球半径,从而完成求解.【详解】由题意可知,当三棱锥的体积最大时是时,为正三角形,如图所示,将三棱锥补成正三棱柱,该正三棱柱的外接球就是三棱锥的外接球,而正三棱柱的外接球球心落在上下底面外接圆圆心连线的中点上,设外接圆半径为,三棱锥外接球半径为,由正弦定理可得:,所以,,所以三棱锥外接球的表面积为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.14、①.-4;②.2【解析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线和,,,解得;∴两直线与间的距离是:.故答案为:;2.15、##【解析】将分式不等式等价转化为不等式组,求解即得.【详解】原不等式等价于,解得,故答案为:.16、2【解析】根据曲线的方程,以及曲线的对称性、范围,结合每个选项进行逐一分析,即可判断.【详解】①将方程中的分别换为,方程不变,故该曲线关于原点对称,故正确;②因为,解得或,故,同理可得:,故错误;③根据②可知,该曲线不是封闭图形;联立与,可得:,将其视作关于的一元二次方程,故,所以方程无根,故曲线与没有交点;综上所述,③正确;④假设曲线C与曲线有4个交点且交点构成正方形,根据对称性,第一象限的交点必在上,联立与可得:,故交点为,而此点坐标不满足,所以这样的正方形不存在,故错误;综上所述,正确的是①③.故答案为:.【点睛】本题考察曲线与方程中利用曲线方程研究曲线性质,处理问题的关键是把握由曲线方程如何研究对称性以及范围问题,属困难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解析】(1)由弧长公式得,根据即可求解;(2)利用导数判断出在上单调递增,即可证明.【小问1详解】由弧长公式得,于是,【小问2详解】cos,显然在上单调递增,于是.18、(1)(2)【解析】(1)求出函数的导函数,再解导函数的不等式,即可求出函数的单调递减区间;(2)依题意可得当时,当时,显然成立,当时只需,参变分离得到,令,,利用导数说明函数的单调性,即可求出参数的取值范围;【小问1详解】解:当时定义域为,所以,令,解得或,令,解得,所以的单调递减区间为;【小问2详解】解:由,即,即,当时显然成立,当时,只需,即,令,,则,所以在上单调递减,所以,所以,故实数的取值范围为.19、(1)(2);【解析】(1)设,将点代入得出的标准方程;(2)联立与直线的方程,得出两点的坐标,进而得出,再结合导数得出的最大值及此时的标准方程.【小问1详解】由题意得:在第一象限的公共点为设,则有:的标准方程为:;【小问2详解】设y=kx+m则①,则②,,,又,由①有代入①有,令,则令,在单调递增,在单调递减,此时,则,代入②得,综上:的最大值2,此时.20、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【小问1详解】设等差数列的公差为,则,解得:或,当时,;当时,.综上,或【小问2详解】由(1)当数列为递增数列,则,设,.21、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或22、(1)平均值为74.6分,中位数为75分;(2).【解析】(1)利用频率分布直方图平均数和中位数算法直接计算即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论