2026届山东省济宁市鱼台一中高二上数学期末联考模拟试题含解析_第1页
2026届山东省济宁市鱼台一中高二上数学期末联考模拟试题含解析_第2页
2026届山东省济宁市鱼台一中高二上数学期末联考模拟试题含解析_第3页
2026届山东省济宁市鱼台一中高二上数学期末联考模拟试题含解析_第4页
2026届山东省济宁市鱼台一中高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省济宁市鱼台一中高二上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要2.若双曲线的离心率为3,则的最小值为()A. B.1C. D.23.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.264.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.75.已知,,若,则实数的值为()A. B.C. D.26.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.507.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.48.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.9.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)10.已知角的终边经过点,则,的值分别为A., B.,C., D.,11.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.212.若动圆的圆心在抛物线上,且恒过定点,则此动圆与直线()A.相交 B.相切C.相离 D.不确定二、填空题:本题共4小题,每小题5分,共20分。13.如果圆锥的底面圆半径为1,母线长为2,则该圆锥的侧面积为___14.已知长方体中,,,则点到平面的距离为______15.正三棱柱的底面边长为2,侧棱长为,则与侧面所成角的正弦值为______16.曲线的一条切线的斜率为,该切线的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上的点M到焦点F的距离为5,点M到x轴的距离为(1)求抛物线C的方程;(2)若抛物线C的准线l与x轴交于点Q,过点Q作直线交抛物线C于A,B两点,设直线FA,FB的斜率分别为,.求的值18.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由19.(12分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.20.(12分)新冠肺炎疫情期间,某地为了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取了1500名居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图.满意度评分满意度等级不满意基本满意满意非常满意(1)求a的值;(2)定义满意度指数,若,则防疫工作需要进行调整,否则不需要调整,根据所学知识判断该区防疫工作是否需要进行调整?21.(12分)2020年3月20日,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称《意见》),《意见》中确定了劳动教育内容要求,要求普通高中要注重围绕丰富职业体验,开展服务性劳动、参加生产劳动,使学生熟练掌握一定劳动技能,理解劳动创造价值,具有劳动自立意识和主动服务他人、服务社会的情怀.我市某中学鼓励学生暑假期间多参加社会公益劳动,在实践中让学生利用所学知识技能,服务他人和社会,强化社会责任感,为了调查学生参加公益劳动的情况,学校从全体学生中随机抽取100名学生,经统计得到他们参加公益劳动的总时间均在15~65小时内,其数据分组依次为:,,,,,得到频率分布直方图如图所示,其中(1)求,的值,估计这100名学生参加公益劳动的总时间的平均数(同一组中的每一个数据可用该组区间的中点值代替);(2)学校要在参加公益劳动总时间在、这两组的学生中用分层抽样的方法选取5人进行感受交流,再从这5人中随机抽取2人进行感受分享,求这2人来自不同组的概率22.(10分)已知函数.(1)讨论函数的单调性;(2)若恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B2、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.3、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A4、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C5、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.6、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A7、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B8、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质9、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D10、C【解析】利用任意角的三角函数的定义:,,,代入计算即可得到答案【详解】由于角的终边经过点,则,,(为坐标原点),所以由任意角的三角函数的定义:,.故答案选C【点睛】本题考查任意角的三角函数的定义,解决此类问题的关键是掌握牢记三角函数定义并能够熟练应用,属于基础题11、B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.12、B【解析】根据题意得定点为抛物线的焦点,为准线,进而根据抛物线的定义判断即可.【详解】解:由题知,定点为抛物线的焦点,为准线,因为动圆的圆心在抛物线上,且恒过定点,所以根据抛物线的定义得动圆的圆心到直线的距离等于圆心到定点,即圆心到直线的距离等于动圆的半径,所以动圆与直线相切.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2π【解析】由圆锥的侧面积公式即可求解【详解】由题意,圆锥底面周长为2π×1=2π,又母线长为2,所以圆锥的侧面积故答案为:2π.14、##2.4【解析】过作于,可证即为点到平面的距离.【详解】过作于,∵是长方体,∴平面平面,又∵平面平面,∴平面,设点到平面的距离为,∵∥平面,∴根据等面积法得,故答案为:.15、【解析】作图,考虑底面是正三角形,按照线面夹角的定义构造直角三角形即可.【详解】依题意,作图如下,取的中点G,连结,∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,与平面的夹角=,在中,,故答案为:.16、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)0【解析】(1)由焦半径公式求C的方程;(2)设直线AB方程,与抛物线方程联立,由韦达定理表示出,,代入中化简求值即可.小问1详解】设点,则,所以,解得因为,所以.所以抛物线C的方程为【小问2详解】由题知,,,直线AB的斜率必存在,且不为零设,,直线AB的斜率为k,则直线AB的方程为,由,得所以,,且,即所以所以的值为018、(1);(2)点不能为线段的中点,理由见解析.【解析】(1)由渐近线夹角求得一个斜率,再代入点的坐标,然后可解得得双曲线方程;(2)设直线方程为(斜率不存在时另说明),与双曲线方程联立,消元后应用韦达定理,结合中点坐标公式求得,然后难验证直线与双曲线是否相交即可得【详解】解:(1)由题意知,双曲线的渐近线的倾斜角为30°或60°,即或当时,的标准方程为,代入,无解当时,的标准方程为,代入,解得故的标准方程为(2)不能是线段的中点设交点,,当直线的斜率不存在时,直线与双曲线只有一个交点,不符合题意.当直线的斜率存在时,设直线方程为,联立方程组,整理得,则,由得,将代入判别式,所以满足题意的直线也不存在所以点不能为线段的中点19、(1);(2)证明见解析;(3).【解析】(1)设点M,P,Q的坐标,将向量进行坐标化,整理即可得轨迹方程;(2)设点,,直线的倾斜角互补,则两直线斜率互为相反数,用斜率公式计算得到,即可计算kAB;(3)若,由两直线斜率积为-1,可得到关于与的等量关系,写出直线AB的方程,将等量关系代入直线方程整理可得直线AB经过的定点【详解】(1)设,,.由,得,即.因为,所以,所以.所以动点的轨迹为抛物线,其方程为.(2)证明:设点,,若直线的倾斜角互补,则两直线斜率互为相反数,又,,所以,,整理得,所以.(3)因为,所以,即,①直线的方程为:,整理得:,②将①代入②得,即,当时,即直线经过定点.【点睛】本题考查直接法求轨迹方程,考查直线斜率为定值的求法和直线恒过定点问题.20、(1)(2)不需要【解析】(1)直接根据频率和为1计算得到答案.(2)计算平均值得到得到答案.【小问1详解】,解得.【小问2详解】.故不需要进行调整.21、(1),;平均数为40.2;(2)【解析】(1)根据矩形面积和为1,求的值,再根据频率分布直方图求平均数;(2)首先利用分层抽样,在中抽取3人,在中抽取2人,再编号,列举基本事件,求概率,或者利用组合公式,求古典概型概率.详解】(1)依题意,,故又因为,所以,所求平均数为(小时)所以估计这100名学生参加公益劳动的总时间的平均数为40.2(2)由频率分布直方图可知,参加公益劳动总时间在和的学生比例为又由分层抽样的方法从参加公益劳动总时间在和的学生中随机抽取5人,则在中抽取3人,分别记为,,,在中抽取2人,分别记为,,则从5人中随机抽取2人基本事件有,,,,,,,,,这2人来自不同组的基本事件有:,,,,,,共6个,所以所求的概率解法二:由频率分布直方图可知,参加公益劳动总时间在和的学生比例为又由分层抽样的方法从参加公益劳动总时间在和的学生中随机抽取5人,则在中抽取3人,在中抽取2人,则从5人中随机抽取2人的基本事件总数为这2人来自不同组的基本事件数为所以所求的概率22、(1)当时,上单调递增;当时,在上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论