中考数学-平面图形的认识(二)压轴解答题(及答案)100_第1页
中考数学-平面图形的认识(二)压轴解答题(及答案)100_第2页
中考数学-平面图形的认识(二)压轴解答题(及答案)100_第3页
中考数学-平面图形的认识(二)压轴解答题(及答案)100_第4页
中考数学-平面图形的认识(二)压轴解答题(及答案)100_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学平面图形的认识(二)压轴解答题(及答案)100一、平面图形的认识(二)压轴解答题1.如图1,直线CB∥OA,∠A=∠B=120°,E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(1)求∠AOB及∠EOC的度数;(2)如图2,若平行移动AC,那么∠OCB:∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;2.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是________(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动。设点P的运动时间为t秒,问是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请在备用图中画出大致示意图,并直接写出符合条件的t值:若不存在,请说明理由.3.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.

(1)若∠H=120°,则∠H的4系补周角的度数为________;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).4.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,,为、之间一点,连接,得到.求证:小明笔记上写出的证明过程如下:证明:过点作,∴∵,∴∴.∵∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,则________.(2)如图,,平分,平分,,则________.5.如图1,在平面直角坐标系中,点A在y轴正半轴上,点B在x轴正半轴上连接AB,AB的长为a,其中a是不等式的最大整数解(1)求AB的长(2)动点P以每秒2个单位长度的速度在AB上从A点向B点运动,设B[的长度为d,运动时间为t,请用含t的式子表示d;(3)如图2,在(2)的条件的下,BD平分交y轴于点D,点E在AB上,点G在BD上,连接,且,点E与点G的纵坐标的差为2,连接OP并还延长交过B点且与x轴垂直的直线于M,当t为何值时,,并求的值.6.如图,在△ABC中,点E和点F在边BC上,连接AE,AF,使得∠EAC=∠ECA,∠BAE=2∠CAF.(1)如图1,求证:∠BAF=∠BFA;(2)如图2,在过点C且与AE平行的射线上取一点D,连接DE,若∠AED=∠B,求证:BE=CD;

7.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=30°,求∠BED的度数;(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,请直接写出∠BED的度数(用含n的代数式表示).8.如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若∠ABG=50°,∠BCD的平分线交AD于点E、交射线GA于点F.求∠AFC的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,请直接写出的值.9.如图所示,点P在∠AOB内,点M、N分别是点P关于AO、BO所在直线的对称点.(1)若△PEF的周长为20,求MN的长.(2)若∠O=50°,求∠EPF的度数.(3)请直接写出∠EPF与∠O的数量关系是________10.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.11.如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D连接AC,BD,CD.(1)写出点C,D的坐标并求出四边形ABCD的面积.(2)在x轴上是否存在一点E,使得的面积是面积的2倍?若存在,请求出E的坐标;若不存在,请说明理由.(3)若点F是直线BD上一个动点,连接FC,FO,当点F在直线BD上运动时,请直接写出与的数量关系.12.生活常识:射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.(1)现象解释:如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.已知:∠1=55°,求∠4的度数.(2)尝试探究:如图3,有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,若∠MON=46°,求∠CEB的度数.(3)深入思考:如图4,有两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是________.(直接写出结果)【参考答案】***试卷处理标记,请不要删除一、平面图形的认识(二)压轴解答题1.(1)解:∵CB∥OA∴∠BOA+∠B=180°∴∠BOA=60°∵∠FOC=∠AOC,OE平分∠BOF∴∠EOC=∠EOF+∠FOC=∠BOF+∠F0A=(∠BOF+∠FOA)=×60°=30°(2)解:不变∵CB∥OA∴∠OCB=∠COA,∠OFB=∠FOA∵∠FOC=∠AOC∴∠COA=∠FOA,即∠OCB:∠OFB=1:2【解析】【分析】(1)利用两直线平行,同旁内角互补,易证∠BOA+∠B=180°,即可求出∠AOB的度数;再利用角平分线的定义,可证得∠BOE=∠EOF,从而可推出∠EOC=∠AOB,代入计算求出∠EOC的度数。(2)利用平行线的性质可证得∠OCB=∠COA,∠OFB=∠FOA,再结合已知条件可证得∠COA=∠FOA,从而可推出∠OCB:∠OFB的值。2.(1)解:∠ACB+∠AOB=180°(2)解:如图1(原卷没图),∵BE是高,∴∠AEB=∠BEC=90°由(1)得:∠AOB+∠ACB=180°,∵∠AOB+∠AOE=180°,∴∠AOE=∠ACB,在△AEO和△BEC中,∵∴△AEO≌△BEC(AAS)(3)解:存在,如答图2

t=②如答图3

t=注:(3)问解题过程由题意得:OP=t,BQ=4t,∵OB=CF,∠BOP=∠QCF,①当Q在边BC上时,如图2,△BOP≌△FCQ∴OP=CQ,即t=7-4t,t=②当Q在BC延长线上时,如图3,△BOP≌△FCQ,∴OP=CQ,那t=4t-7,t=综上所述,当t=秒或秒时,以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等。【解析】【分析】(1)在四边形ODEC中,由四边形的内角和,结合题意,可知∠DOE+∠C=180°,由∠EOD和∠AOB为对顶角,所以∠AOB+∠ACB=180°(2)根据题意,由三角形全等的判定定理证明得到答案即可;(3)假设存在t值,使得三角形全等,根据全等三角形的性质逆推,结合三角形全等的性质进行判断即可。3.(1)60°(2)解:①如图,过点E作EF//AB,∵AB//EF,∴EF//CD,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D,即∠BED=∠B+∠D,∵∠BED+3∠B=360°,∠D=60,∴,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.理由如下:若∠BPD是∠F的k系补周角,则∠F+k∠BPD=360°,∴k∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F,∴k∠BPD=∠ABF+∠CDF,又∵∠ABF=n∠ABE,∠CDF=n∠CDE,∴k∠BPD=n∠ABE+n∠CDE,∵∠BPD=∠PHD+∠PDH,∵AB//CD,PG平分∠ABE,PD平分∠CDE,∴∠PHD=∠ABH=,∠PDH=,∴(+)=n(∠ABE+∠CDE),∴k=2n.【解析】【解答】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠BED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.4.(1)240°(2)51°【解析】【解答】(1)解:作EM∥AB,FN∥CD,如图,AB∥CD,∴AB∥EM∥FN∥CD,∴∠B=∠1,∠2=∠3,∠4+∠C=180°,∴∠B+∠CFE+∠C=∠1+∠3+∠4+∠C=∠BEF+∠4+∠C=∠BEF+180°,∵,∴∠B+∠CFE+∠C=60°+180°=240°;(2)解:如图,分别过G、H作AB的平行线MN和RS,∵平分,平分,∴∠ABE=∠ABG,∠SHC=∠DCF=∠DCG,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABG,∠SHC=∠DCF=∠DCG,∠NGB+∠ABG=∠MGC+∠DCG=180°,∴∠BHC=180°-∠RHB-∠SHC=180°-(∠ABG+∠DCG),∠BGC=180°-∠NGB-∠MGC=180°-(180°-∠ABG)-(180°-∠DCG)=∠ABG+∠DCG-180°,∴∠BGC=360°-2∠BHC-180°=180°-2∠BHC,又∵∠BGC=∠BHC+27°,∴180°-2∠BHC=∠BHC+27°,∴∠BHC=51°.【分析】(1)作EM∥AB,FN∥CD,如图,根据平行线的性质得AB∥EM∥FN∥CD,所以∠B=∠1,∠2=∠3,∠4+∠C=180°,然后利用等量代换计算∠B+∠F+∠C;(2)分别过G、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABG和∠DCG分别表示出∠H和∠G,从而可找到∠H和∠G的关系,结合条件可求得∠H.5.(1)解不等式不等式得,a<11,∵a是不等式的最大整数解,∴a=10,∵AB的长为a,∴AB的长为10;(2)由(1)知,AB=10,由运动知,AP=2t,∴d=BP=AB−AP=10−2t(0≤t≤5);(3)如图2,在EA上截取EN=EG,∵∠AED=∠GED,DE=DE,∴△DEN≌△DEG(SAS),∴∠BND=∠DGE,∠EDN=∠EDB=45,∴∠BDN=∠EDB+∠EDN=90,∴∠BND+∠DBN=90,∴∠DGE+∠DBN=90,∵BD平分∠ABO交y轴于点D,∴∠DBN=∠DBO,∴∠DGE+∠DBO=90,∵∠BDO+∠DBO=90,∴∠DGE=∠BDO,∴EG∥OD,∵点E与点G的纵坐标的差为2,∴EG=2,∵S△OBP:S△BPM=3:2,∴S△OBM:S△BPM=5:2,∴,∴,∴,∴AP=6,∴t=6÷2=3秒,=.【解析】【分析】(1)先解不等式得,a<11,进而确定出a,即可得出结论;(2)由运动知AP=2t,即可得出结论;(3)先判断出△DEN≌△DEG(SAS),得出∠BND=∠DGE,∠EDN=∠EDB=45°,即:∠BDN=90°,再用同角(或等角)的余角相等判断出∠DGE=∠BDO,得出EG∥OD,即可求出EG=2,再由S△OBP:S△BPM=3:2,得出,进而得出,即,求出AP=6,即可得出结论.6.(1)设,则,∴,,∴;(2),∴,,又∵,∴,∴,∴;【解析】【分析】(1)设,则,可得,,易证;(2)根据,,则有,,,利用AAS可证,则有.7.(1)∵平分,∴;(2)过点作,如图:∵平分,;平分,∴,∵,∴∴,∴;(3)过点E作,如图:∵DE平分,;BE平分,∴,∵,∴∴,∴.【解析】【分析】(1)根据角平分线定义即可得到答案;(2)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解;(3)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解.8.(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA(2)解:①若点E在线段AD上,∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∴∠AEF=∠GCF=45°,∵∠ABC=50°,∴∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②若点E在DA的延长线上,如图4,∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°(3)的值是5或根据平行线的性质、三角形的内角和定理和角平分线的定义分别表示出∠ABM和∠GBM,即可求出结论.【解析】【解答】(3)解:有两种情况:①当M在BP的下方时,如图5,设∠ABC=4x,∵∠ABP=3∠PBG,∴∠ABP=3x,∠PBG=x,∵AG∥CH,∴∠BCH=∠AGB==90°﹣2x,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x,∴∠ABM=∠ABP+∠PBM=3x+2x=5x,∠GBM=∠PBM-PBG=x∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时,如图6,同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x,∠GBM=∠PBG+∠PBM=3x∴∠ABM:∠GBM=x:3x=.综上,的值是5或.【分析】(1)根据平行线的性质可得∠GAD=∠BGA,然后根据角平分线的定义可得∠BAG=∠GAD,最后利用等量代换即可求出结论;(2)根据点E在线段AD上和点E在射线DA的延长线上分类讨论,根据画出对应的图形,然后根据角平分线的定义、平行线的性质和等量代换分别求出结论即可;(3)根据点M在BP下方和BP上方分类讨论,分别画出对应的图形,设∠ABC=4x,9.(1)解:∵点M、N分别是点P关于AO、BO所在直线的对称点.∴OA垂直平分PM,OB垂直平分PN,∴EM=EP,FP=FN,∴MN=EM+EF+FN=EP+EF+FP=△PEF的周长,又∵△PEF的周长为20,∴MN=20cm.(2)解:由(1)知:EM=EP,FP=FN,∴∠PEF=2∠M,∠PFE=2∠N,∵∠PCE=∠PDF=90°,∴在四边形OCPD中,∠CPD+∠O=180°,又∵在△PMN中,∠MPN+∠M+∠N=180°,且∠CPD+∠O=180°,∴∠M+∠N=∠O=50°.∴在△PEF中,∠EPF+∠PEF+∠PFE=∠EPF+2∠M+2∠N=180°,即∠EPF=180°-2∠M-2∠N=180°-2(∠M+∠N)=180°-2∠O=80°.(3)∠EPF=180°-2∠O【解析】【解答】解:(3)由(2)可直接得到∠EPF=180°-2∠O.故答案为:∠EPF=180°-2∠O.【分析】(1)根据轴对称的性质可得EM=EP,FP=FN,进而推出MN=EM+EF+FN=EP+EF+FP=△PEF的周长即可;(2)由(1)及等腰三角形的性质、四边形的内角和找出∠M+∠N与∠O、∠EPF与∠O的关系即可;(3)由(2)可直接得到∠EPF=180°-2∠O.10.(1)解:如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)解:如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)解:如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠MGN=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.【解析】【分析】(1)过G作GH∥AB,依据两直线平行,内错角相等,即可得到∠AMG+∠CNG的度数;(2)过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,利用平行线的性质以及角平分线的定义,求得∠MGN=30°+α,∠MPN=60°-α,即可得到∠MGN+∠MPN=30°+α+60°-α=90°;(3)过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,利用平行线的性质以及角平分线的定义,可得∠MEN=∠TEN-∠TEM=90°-y-2x,∠MGN=x+y,再根据2∠MEN+∠MGN=105°,即可得到2(90°-y-2x)+x+y=105°,求得x=25°,即可得出∠AME=2x=50°.11.(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论