版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海长征中学七年级下学期期末压轴难题数学试题及答案一、选择题1.如图所示,下列结论中正确的是()A.和是同位角 B.和是同旁内角C.和是内错角 D.和是对顶角2.下列运动属于平移的是()A.汽车在平直的马路上行驶 B.吹肥皂泡时小气泡变成大气泡C.铅球被抛出 D.红旗随风飘扬3.已知点在轴的负半轴上,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列句子中,属于命题的是()①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.A.①④ B.①②④ C.①②③ D.②③5.直线,,,,则()A.15° B.25° C.35 D.20°6.下列说法错误的是()A.-8的立方根是-2 B.C.的相反数是 D.3的平方根是7.如图,把一个长方形纸条沿折叠,已知,,则为()A.30° B.28° C.29° D.26°8.如图,在平面直角坐标系中,将边长为3,4,5的沿轴向右滚动到的位置,再到的位置…依次进行下去,发现,,…那么点的坐标为()A. B. C. D.二、填空题9.已知是实数,且则的值是_______.10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________.12.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(=90°)在直尺的一边上,若=63°,则的度数是__________.13.如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果∠=40°,那么∠EFB的度数是_____度.14.若,且a,b是两个连续的整数,则a+b的值为_______15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.16.如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,…,按这样的运动规律,经过次运动后,动点的坐标是________.三、解答题17.(1)计算(2)计算:18.求下列各式中的x:(1);(2);(3).19.如图所示,已知BD⊥CD于D,EF⊥CD于F,∠A=80°,∠ABC=100°.求证:∠1=∠2.证明:∵BD⊥CD,EF⊥CD(已知)∴∠BDC=∠EFC=90°(垂直的定义)∴(同位角相等,两直线平行)∴∠2=∠3∵∠A=80°,∠ABC=100°(已知)∴∠A+∠ABC=180°∴AD//BC∴(两直线平行,内错角相等)∴∠1=∠2.20.已知点P(﹣3a﹣4,a+2).(1)若点P在y轴上,试求P点的坐标;(2)若M(5,8),且PM//x轴,试求P点的坐标;(3)若点P到x轴,y轴的距离相等,试求P点的坐标.21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.二十二、解答题22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)二十三、解答题23.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且(1)直接写出的面积;(2)如图②,若,作的平分线交于,交于,试说明;(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.26.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】解:A、∠1和∠2是同旁内角,故本选项错误;B、∠2和∠3是同旁内角,故本选项正确;C、∠1和∠4是同位角,故本选项错误;D、∠3和∠4是邻补角,故本选项错误;故选:B.【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合.故选:A.【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答.【详解】∵点P(0,a)在y轴的负半轴上,∴,∴,,∴点M(-a,-a+5)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.4.B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.【详解】解:①三角形的内角和等于180°,是三角形内角和定理,是命题;②对顶角相等,是对顶角的性质,是命题;③过一点作已知直线的垂线,是作图,不是命题;④两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是①②④.故选:B.【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.5.A【分析】分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线∥AD、∥BC,如图所示,则AD∥BC∵∥∴∥BC∴∠CBF=∠2∵∥AD∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】根据平方根以及立方根的概念进行判断即可.【详解】A、-8的立方根为-2,这个说法正确;B、|1-|=-1,这个说法错误;C.-的相反数是,这个说法正确;D、3的平方根是±,这个说法正确;故选B.【点睛】本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.7.C【分析】由AE平行BD,可得∠AED=∠ADB=32°,可求∠BAE=122°,由折叠,可得∠BAF=∠EAF,可求∠EAF=61°即可【详解】∵AE//BD,∴∠AED=∠ADB=32°,∴∠BAE=∠BAD+∠DAE=90°+32°=122°,∵折叠,∴∠BAF=∠EAF,∴2∠EAF=∠BAE=122°∴∠EAF=61°∴∠DAF=∠EAF-∠EAD=61°-32°=29°故选择C【点睛】本题考查平行线性质,掌握折叠性质,平行线性质是解题关键.8.D【分析】根据旋转的过程寻找规律即可求解.【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(解析:D【分析】根据旋转的过程寻找规律即可求解.【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A9(5×12,3),A10(5×12+3,0),即(63,0).故选:D.【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.二、填空题9.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、C解析:∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、CE为△ABC的两条角平分线,∴∠ABD=∠ABC,∠ACE=∠ACB,∵∠1=∠ACE+∠A,∠2=∠ABD+∠A∴∠1+∠2=∠ACE+∠A+∠ABD+∠A=∠ABC+∠ACB+∠A+∠A=(∠ABC+∠ACB+∠A)+∠A=90°+∠A故答案为∠1+∠2-∠A=90°.【点睛】考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.12.27°【分析】根据直尺的两边是平行的,从而可以得到CD∥EF,然后根据平行线的性质,可以得到∠2和∠DCE的关系,再根据∠ACB=∠1+∠DCE,从而可以求得∠1的度数,本题得以解决.【详解】解析:27°【分析】根据直尺的两边是平行的,从而可以得到CD∥EF,然后根据平行线的性质,可以得到∠2和∠DCE的关系,再根据∠ACB=∠1+∠DCE,从而可以求得∠1的度数,本题得以解决.【详解】解:∵CD//EF,∠2=63°,∴∠2=∠DCE=63°,∵∠DCE+∠1=∠ACB=90°,∴∠1=27°,故答案为:27°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答.13.70【分析】先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF=∠D1EF,∵∠AED1=40°解析:70【分析】先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF=∠D1EF,∵∠AED1=40°,∴∠DEF==70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠EFB=∠DEF=70°.故答案为:70.【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出∠DEF=∠D1EF解答.14.13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可.详解:∵6<<7,∴a=6,b=7,∴a+b=13.故答案为13.点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可.详解:∵6<<7,∴a=6,b=7,∴a+b=13.故答案为13.点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键.15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3解析:或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去),综上,x的值为2或,故答案为2或.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n为奇数时,第n次运动到点(,),当n为偶数时,第n次运动到点(,),所以经过2021次运动后,动点P的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(1);(2).【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴,∴,∴;(2解析:(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴,∴,∴;(2)∴∴∴;(3),∴,∴,∴.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.19.BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据解析:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据平行线的判定得出AD∥BC,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2.【详解】证明:∵BD⊥CD,EF⊥CD(已知),∴∠BDC=∠EFC=90°(垂直的定义),∴BD∥EF(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),∵∠A=80°,∠ABC=100°(已知),∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∴∠1=∠2(等量代换).故答案为:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【点睛】本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键.20.(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1).【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1).【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案;(3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案.【详解】(1)∵点P在y轴上,∴,∴,∴∴P(0,).(2)∵PM//x轴,∴,∴,此时,,∴P(-22,8)(3)∵若点P到x轴,y轴的距离相等,∴,∴或,解得:或,当时,﹣3a﹣4=,a+2=,∴P(,),当时,﹣3a﹣4=-1,a+2=1,∴P(-1,1),综上所述:P(,)或P(-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.21.【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.【详解】∵一个正数的两个平方根为和,∴,解得:,∵是的立方根,∴,解得:,∵,解析:【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.【详解】∵一个正数的两个平方根为和,∴,解得:,∵是的立方根,∴,解得:,∵,∴的整数部分是6,则小数部分是:,∴,∴的平方根为:.【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.二十二、解答题22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是.(2)不同意.因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,所以,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.二十三、解答题23.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B作BG∥DM,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B作BG∥DM,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM与BC交于点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)证明:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.24.(1)①②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.25.(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 本学期个人发展计划
- 期末考试总结与反思15篇
- 福建省莆田市秀屿区莆田第二十五中学2025-2026学年九年级上学期12月月考语文试题(无答案)
- 2026年潍坊理工学院单招职业适应性考试模拟试题及答案解析
- 2026年锡林郭勒职业学院单招职业适应性测试模拟试题及答案解析
- 2026年鄂尔多斯职业学院单招职业适应性考试模拟试题及答案解析
- 2026年铁岭卫生职业学院单招职业适应性考试模拟试题及答案解析
- 2026年黔南民族医学高等专科学校单招职业适应性测试模拟试题及答案解析
- 2026年新疆轻工职业技术学院单招职业适应性测试模拟试题及答案解析
- 神经内科疾病康复与护理策略
- 化肥卖合同范本
- 2025年大学本科三年级(建筑环境与能源应用工程)暖通空调设计测试题及答案
- 6第六章 项目管理架构
- 2025年全新中医药学概论试题与答案
- 2026云上(贵州)数据开发有限公司第一次社会招聘18人考试笔试备考题库及答案解析
- 2025秋小学湘科版(新教材)科学三年级上册知识点及期末测试卷及答案
- 装修工赔偿协议书
- 2025重庆两江新区公安机关辅警招聘56人备考题库含答案详解(完整版)
- 2025年及未来5年市场数据中国焦化行业市场前景预测及投资方向研究报告
- 国开电大可编程控制器应用课程实验参考答案
- 法制进校园安全伴我行主题班会ppt
评论
0/150
提交评论