版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海控江中学九年级上册压轴题数学模拟试卷含详细答案一、压轴题1.如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.2.已知:如图,抛物线交正半轴交于点,交轴于点,点在抛物线上,直线:过点,点是直线上的一个动点,的外心是.(1)求,的值.(2)当点移动到点时,求的面积.(3)①是否存在点,使得点落在的边上,若存在,求出点的坐标,若不存在,请说明理由.②过点作直线轴交直线于点,当点从点移动到点时,圆心移动的路线长为_____.(直接写出答案)3.如图,过原点的抛物线y=﹣x2+bx+c与x轴交于点A(4,0),B为抛物线的顶点,连接OB,点P是线段OA上的一个动点,过点P作PC⊥OB,垂足为点C.(1)求抛物线的解析式,并确定顶点B的坐标;(2)设点P的横坐标为m,将△POC绕着点P按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n(0<n<2)个单位,点B、C′平移后对应的点分别记为B′、C″,是否存在n,使得四边形OB′C″A的周长最短?若存在,请直接写出n的值和抛物线平移的方向,若不存在,请说明理由.4.在平面直角坐标系中,函数和的图象关于y轴对称,它们与直线分别相交于点.(1)如图,函数为,当时,的长为_____;(2)函数为,当时,t的值为______;(3)函数为,①当时,求的面积;②若,函数和的图象与x轴正半轴分别交于点,当时,设函数的最大值和函数的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.5.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为,求线段AC的长.6.如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A.(1)求证:BC为⊙O的切线;(2)求∠B的度数.(3)若⊙O半径是4,点E是弧AC上的一个动点,过点E作EM⊥OA于点M,作EN⊥OC于点N,连接MN,问:在点E从点A运动到点C的过程中,MN的大小是否发生变化?如果不变化,请求出MN的值;如果变化,请说明理由.7.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价(元/千克)关于时间的函数关系式分别为(,且为整数);,他们的图像如图1所示,未来40天的销售量(千克)关于时间的函数关系如图2的点列所示.(1)求关于的函数关系式;(2)那一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求的最大值(精确到0.01元).8.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……请你参考上面的想法,帮助小宇证明∠APE=2∠MAD.(一种方法即可)9.如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.10.如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.11.如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.12.如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当________时,为直角三角形.13.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=且经过A、C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.14.如图,在直角中,,,作的平分线交于点,在上取点,以点为圆心经过、两点画圆分别与、相交于点、(异于点).(1)求证:是的切线;(2)若点恰好是的中点,求的长;(3)若的长为.①求的半径长;②点关于轴对称后得到点,求与的面积之比.15.已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.16.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A=度;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.17.如图,在直角坐标系中,点在第一象限,轴于,轴于,,,有一反比例函数图象刚好过点.(1)分别求出过点的反比例函数和过,两点的一次函数的函数表达式;(2)直线轴,并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动.设运动时间为(秒).①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;②若直线从轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点,,,为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.18.我们规定:有一组邻边相等,且这组邻边的夹角为的凸四边形叫做“准筝形”.(1)如图1,在四边形中,,,,求证:四边形是“准筝形”;(2)如图2,在“准筝形”中,,,,,求的长;(3)如图3,在中,,,,设是所在平面内一点,当四边形是“准筝形”时,请直接写出四边形的面积.19.如图①,在矩形中,cm,,点从点出发,沿射线以(cm/s)的速度匀速移动.连接,过点作,与射线相交于点,作矩形,连接.设点移动的时间为(s),的面积为(cm2),与的函数关系如图②所示.(1)=;(2)求矩形面积的最小值;(3)当为等腰三角形时,求的值.20.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1);(2)9;(3)存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【解析】【分析】(1)根据抛物线经过A、B两点,带入解析式,即可求得a、b的值.(2)根据PA=PB,要求四边形PAOC的周长最小,只要P、B、C三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM为直角三角形,便可分为两种情况QM⊥BC和QM⊥BO,再结合△QBM∽△CBO,根据相似比例便可求解.【详解】解:(1)将点A(1,0),B(4,0)代入抛物线中,得:解得:所以抛物线的解析式为.(2)由(1)可知,抛物线的对称轴为直线.连接BC,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9.(3)当QM⊥BC时,易证△QBM∽△CBO所以,又因为△CQM为等腰三角形,所以QM=CM.设CM=x,则BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.过点M作NM⊥OB于N,则MN//OC,所以,即,所以,所以点M的坐标为()当QM⊥BO时,则MQ//OC,所以,即设QM=3t,则BQ=4t,又因为△CQM为等腰三角形,所以QM=CM=3t,BM=5-3t又因为QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以点M的坐标为().综上所述,存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.2.(1);(2);(3)①点E的坐标为:或或;②圆心P移动的路线长=【解析】【分析】(1)令求出点A(6,0),把点C(-4,n)代入在抛物线方程,解得:n=5,把点B(0,-3)代入,从而可得答案;(2)记与轴的交点为,利用即可求解;(3)①分当点P落在CA上时,点P落在AE上时,点P落在CE上时三种情况讨论即可;②分E在D和B点两种情况,求出圆心点的坐标,则圆心P移动的路线长=,即可求解.【详解】解:(1)令点A(6,0),把点C(-4,n)代入在抛物线方程,解得:,把点B(0,-3)代入,解得:,则:直线l:,…①(2)由(1)知:A(6,0)、B(0,-3)、C(-4,5)、AC中点为设为:解得:所在的直线方程为:,如图,AC与y轴交点H坐标为:(0,3),(3)如下图:①当点P落在CA上时,圆心P为AC的中点其所在的直线与AC垂直,的垂直平分线即圆心P所在的直线方程为:把代入得:…②,解得:E的坐标为;当点P落在AE上时,设点则点P的坐标,则PA=PC,解得:故点当点P落在CE上时,则PC=PA,同理可得:故点综上,点E的坐标为:或或;②当E在D点时,作AD的垂直平分线交的垂直平分线于点,则,的纵坐标为代入②式,解得:同理当当E在B点时,作AB的垂直平分线交的垂直平分线于点,的中点为:,设为:,解得:AB直线方程为:,设的垂直平分线方程为:,的垂直平分线方程为:解得:则圆心P移动的路线长=故答案为:【点评】本题是二次函数的综合题,考查了二次函数与轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目.3.(1),点B(2,2);(2)m=2或;(3)存在;n=时,抛物线向左平移.【解析】【分析】(1)将点A和点O的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B的坐标;(2)由点A、点B、点C的坐标以及旋转的性质可知△△PDC为等腰直角三角形,从而可得到点O′坐标为:(m,m),点C′坐标为:(,),然后根据点在抛物线上,列出关于m的方程,从而可解得m的值;(3)如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处,以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短,先求得点B′的坐标,根据点B移动的方向和距离从而可得出点抛物线移动的方向和距离.【详解】解:(1)把原点O(0,0),和点A(4,0)代入y=x2+bx+c.得,∴.∴.∴点B的坐标为(2,2).(2)∵点B坐标为(2,2).∴∠BOA=45°.∴△PDC为等腰直角三角形.如图,过C′作C′D⊥O′P于D.∵O′P=OP=m.∴C′D=O′P=m.∴点O′坐标为:(m,m),点C′坐标为:(,).当点O′在y=x2+2x上.则−m2+2m=m.解得:,(舍去).∴m=2.当点C′在y=x2+2x上,则×()2+2×=m,解得:,(舍去).∴m=(3)存在n=,抛物线向左平移.当m=时,点C′的坐标为(,).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(,),点B(2,2).∴点A′(,).∴点A″的坐标为(,).设直线OA″的解析式为y=kx,将点A″代入得:,解得:k=.∴直线OA″的解析式为y=x.将y=2代入得:x=2,解得:x=,∴点B′得坐标为(,2).∴n=2.∴存在n=,抛物线向左平移.【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m,m),点C′坐标为:(,)以及点B′的坐标是解题的关键.4.(1)4;(2)1;(3)①;②.【解析】【分析】(1)由题意,先求出的解析式,再求出P、Q两点的坐标,即可求出PQ的长度;(2)由题意,先求出的解析式,结合PQ的长度,即可求出t的值;(3)①根据题意,先求出的解析式,然后求出点P和点Q的纵坐标,得到PQ的长度,利用三角形的面积公式即可求出面积;②根据题意,先求出函数和的解析式,然后求出两个函数的对称轴,利用二次函数的对称性和增减性进行分类讨论:当时,以及当时,分别求出h与c的关系式即可.【详解】解:(1)∵函数为,函数和的图象关于y轴对称,∴函数为,当时,有;;∴点P为(2,3),点Q为(2,),∴的长为;故答案为:4;(2)∵函数为,函数和的图象关于y轴对称,∴函数为;∵,∴点P在第一象限,点Q在第四象限,设点P为(t,),点Q为(t,),∵,∴,解得:;故答案为:1;(3)①∵函数为,函数和的图象关于y轴对称,∴函数为:,即;∵,∴把代入函数,则;把代入函数,则;∴,∴;②由①可知,函数为,函数为,∵函数和的图象与x轴正半轴分别交于点,∴,解得:,∴函数可化为:,函数可化为:;∴函数的对称轴为:,函数的对称轴为:,∵,则,则函数,函数均是开口向下;∴函数在上,y随x增大而增大,在上是y随x增大而减小;函数在上,y随x增大而减小;∵,,当时,则函数在时取到最大值;函数在时取到最小值,则∴,即();当时,则函数在时取到最大值;函数在时取到最小值,则,即();综合上述,h关于c的函数解析式为:.【点睛】本题考查了二次函数的综合问题,考查了二次函数的对称性、增减性,也考查了一次函数的图像和性质,待定系数法求函数的解析式,以及两点之间的距离,求三角形的面积等知识,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意运用数形结合、分类讨论的思想进行分析,从而进行解题.5.(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)【解析】【分析】(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.【详解】解:(1)∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;故答案为:∠ABP=∠EBC,AP=EC;(2)成立,理由如下,∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;(3)过点C作CD⊥m于D,∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,∴PC2=,∴PC=3,设AP=CE=t,则AB=AE=3t,∴AC=2t,∵m∥n,∴∠CAD=∠AEB=60°,∴AD=AC=t,CD=AD=t,∵PD2+CD2=PC2,∴(2t)2+3t2=9,∴t=(负值舍去),∴AC=2t=.【点睛】本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.6.(1)见解析;(2)60°;(3)不变,MN=【解析】【分析】(1)连接AO、CO、BO、BD,根据菱形的性质得到AB=CB,然后根据SSS即可证明两三角形全等;(2)首先根据全等的性质得到O、B、D共线,然后根据三角形外角的性质得到∠BOC=2∠ODC=2∠OBC,最终根据余角的性质即可求解;(3)延长EM、EN交⊙O于F、G,连接FG、OF、OG,过点O作OH垂直于FG于点H,根据垂径定理和三角形中位线的性质得到MN=FG,根据(2)问结论结合圆周角定理求得∠FOH=60°,最后根据含30°的直角三角形的边角关系即可求解.【详解】(1)如图,连接AO、CO、BO、BD.∵AB是⊙O的切线,∴OA⊥AB∴∠BAO=90°.∵四边形ABCD是菱形∴AB=CB又∵AO=CO,BO=BO∴△BAO≌△BCO(SSS)∴∠BCO=∠BAO=90°,即OC⊥BC∴BC为⊙O的切线(2)∵△ABO≌△CBO∴∠ABO=∠CBO∵四边形ABCD是菱形∴BD平分∠ABC,CB=CD∴点O在BD上∵∠BOC=∠ODC+∠OCD,OD=OC∴∠ODC=∠OCD∴∠BOC=2∠ODC∵CB=CD∴∠OBC=∠ODC∴∠BOC=2∠OBC∵∠BOC+∠OBC=90°∴∠OBC=30°∴∠ABC=2∠OBC=60°即∠B=60°;(3)不变延长EM、EN交⊙O于F、G,连接FG、OF、OG.过点O作OH垂直于FG于点H.∵EM⊥OA、EN⊥OC.∴M、N是EF、EG的中点.∴MN是△EFG的中位线∴MN=FG.由(2)知∠ABC=60°∴∠AOC=120°∴∠FOG=∠AOC=120°∴∠MEN=∠FOG=60°,∴∠FOH=60°,∴OH=2,FH=.∴FG=.∴MN=FG=.【点睛】本题考查了菱形的性质,三角形全等的判定和性质,垂径定理,圆周角定理,正确的引出辅助线,熟练利用三角形和圆的知识点求解是本题的关键.7.(1)m=,(2)t=40时w最大=13200,(3)的最大值是.【解析】【分析】(1)由图2知m与t是一次函数关系,设0≤t≤30时的解析式为m=k1t+b1,由图形的点(0,120),(30,180)在函数图像上代入解析式即可,设时的解析式为m=k2t+b2,由图形的点(40,220),(30,180)在函数图像上代入解析式即可,(2)由商品没有成本价,为此只要商品的销售额最大,利润就最大,设y1的总价为w1,y2的总价为w2,总价=销售单价×销售量即可列出,w1=与w2=两种总销售w=w1+w2,把w函数配方讨论当,第一段w最大与,在第二段,w最大经比较即可(3)根据题意决定每销售1千克产品就捐赠元给“环保公益项目”,则捐赠额a(4t+60)后10天每日销售额Q=w-am=-2t2+(290-4a)t+4800-60a,Q≥3600,构造抛物线Q在Q=3600直线上方有解即可,在-20,开口向下,在3600上方取值,且满足,对称轴=,只要对称轴介于30与40之间即可.【详解】(1)由图2知m与t是一次函数关系,设0≤t≤30时的解析式为m=k1t+b1,由图形的点(0,120),(30,180)在函数图像上,则,解得,m=2t+120,设时的解析式为m=k2t+b2,由图形的点(40,220),(30,180)在函数图像上,则,解得,m=4t+60,m=,(2)由商品没有成本价,为此只要商品的销售总值最大,利润就最大,设y1的总价为w1,y2的总价为w2,w1=,整理得w1=,w2=,整理得w2=,总销售w=w1+w2=,配方得w=,当,第一段w最大=11760,而,>40,在第二段,w随t的增大而增大,t=40,w最大=13200,经比较11760<13200,t=40时w最大=13200,(3)根据题意决定每销售1千克产品就捐赠元给“环保公益项目”,则捐赠额a(4t+60),后10天每日销售额Q=w-am=-2t2+(290-4a)t+4800-60a,则Q-3600=-2t2+(290-4a)t+1200-60a,∵-20,开口向下,在3600上方取值,且满足,对称轴为t=只要,,,的最大值是.【点睛】本题考查分段函数的解析式的求法与利用,两图象结合并利用,求日销售最大利润,抛物线顶点式,分段比较,在最后又利用捐赠构造新函数,求对称轴,利用对称轴解决问题,此题难度较大,综合能力强,必须掌握好函数的各方面的知识.8.(1)证明见解析;(2)①补图见解析;②证明见解析.【解析】【分析】【详解】(1)证明:∵AB=AC,AD为BC边上的高,∠BAD=20°,∴∠BAC=2∠BAD=40°.∵CF⊥AB,∴∠AFC=90°.∵E为AC中点,∴EF=EA=.∴∠AFE=∠BAC=40°.(2)①当点P在边AB上是,补全图形如图当点P在AB的延长线上是,补全图形如图②Ⅰ、当点P在边AB上时,证明:想法1:如图3,连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠PED=∠APE.∵∠ADC=90∘,E为AC中点,∴同理可证∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上,∴∠PED=2∠MAD.∴∠APE=2∠MAD.想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90∘.∵E为AC中点,∴AE=NE=AC.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.∴∠NEC=∠ANE+∠NAC=2α+2β.∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC−∠BAC=2α.∴∠APE=2∠MAD.Ⅱ、当点P在AB的延长线上时证明:想法1:连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠1=∠APE.∵∠ADC=90°,E为AC中点,∴.同理可证.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.∴∠1=2∠MAD.∴∠APE=2∠MAD.想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90∘.∵E为AC中点,∴AE=NE=AC.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.∴∠NEC=∠ANE+∠NAC=2α+2β.∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC−∠BAC=2α.∴∠APE=2∠MAD.想法3:在NE上取点Q,使∠NAQ=2∠MAD,即∠3=∠4.即∵E为AC的中点,9.(1)t=1;(2)存在,,理由见解析;(3)可能,或或理由见解析【解析】【分析】(1)用待定系数法求出直线AC的解析式,根据题意用t表示出点H的坐标,代入求解即可;(2)根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t﹥4,用待定系数法求出直线AB的解析式,求出点H落在BC边上时的t值,求出此时重叠面积为﹤,进一步求出重叠面积关于t的表达式,代入解t的方程即可解得t值;(3)由已知求得点D(2,1),AC=,OD=OC=OA=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC的函数解析式为y=kx+b,将点A、C坐标代入,得:,解得:,∴直线AC的函数解析式为,当点落在边上时,点E(3-t,0),点H(3-t,1),将点H代入,得:,解得:t=1;(2)存在,,使得.根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t﹥4,设直线AB的函数解析式为y=mx+n,将点A、B坐标代入,得:,解得:,∴直线AC的函数解析式为,当t﹥4时,点E(3-t,0)点H(3-t,t-3),G(0,t-3),当点H落在AB边上时,将点H代入,得:,解得:;此时重叠的面积为,∵﹤,∴﹤t﹤5,如图1,设GH交AB于S,EH交AB于T,将y=t-3代入得:,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t代入得:,∴点T,∴AG=5-t,SG=10-2t,BE=7-t,ET=,,所以重叠面积S==4--=,由=得:,﹥5(舍去),∴;(3)可能,≤t≤1或t=4.∵点D为AC的中点,且OA=2,OC=4,∴点D(2,1),AC=,OD=OC=OA=,易知M点在水平方向以每秒是4个单位的速度运动;当0﹤t﹤时,M在线段OD上,H未到达D点,所以M与正方形不相遇;当﹤t﹤1时,+÷(1+4)=秒,∴时M与正方形相遇,经过1÷(1+4)=秒后,M点不在正方行内部,则;当t=1时,由(1)知,点F运动到原E点处,M点到达C处;当1≤t≤2时,当t=1+1÷(4-1)=秒时,点M追上G点,经过1÷(4-1)=秒,点都在正方形内(含边界),当t=2时,点M运动返回到点O处停止运动,当t=3时,点E运动返回到点O处,当t=4时,点F运动返回到点O处,当时,点都在正方形内(含边界),综上,当或或时,点可能在正方形内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.10.(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解析】【分析】(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.【点睛】本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.11.(1)EF=2;(2)y=x(0≤x≤12);(3)满足条件的CN的值为或12.【解析】【分析】(1)在Rt△BEF中,利用勾股定理即可解决问题.(2)根据速度比相等构建关系式解决问题即可.(3)分两种情形如图3﹣1中,当MN∥DF,延长FE交DC的延长线于H.如图3﹣2中,当MN∥DE,分别利用平行线分线段成比例定理构建方程解决问题即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠B=90°,AB=CD=6,AD=BC=8,∵AF=BE=2,∴BF=6﹣2=4,∴EF===2.(2)由题意:=,∴=,∴y=x(0≤x≤12).(3)如图3﹣1中,延长FE交DC的延长线于H.∵△EFB∽△EHC,∴==,∴==,∴EH=6,CH=12,当MN∥DF时,=,∴=,∵y=x,解得x=,如图3﹣2中,当MN∥DE时,=,∴=,∵y=x,解得x=12,综上所述,满足条件的CN的值为或12.【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12.(1)详见解析;(2)能;(3)2或秒【解析】【分析】(1)在中,,,由已知条件求证;(2)求得四边形为平行四边形,若使平行四边形为菱形则需要满足的条件及求得;(3)分三种情况:①时,四边形为矩形.在直角三角形中求得即求得.②时,由(2)知,则得,求得.③时,此种情况不存在.【详解】(1)在中,∴又∵∴(2)能.理由如下:∵,∴又∵∴四边形为平行四边形在中,∴又∵∴∴,∴当时,为菱形∴AD=∴,即秒时,四边形为菱形(3)①时,四边形为矩形.在中,,.即,.②时,由(2)四边形为平行四边形知,.,.则有,.③当时,此种情况不存在.综上所述,当秒或秒时,为直角三角形.【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.13.(1);(2)∆PAC的面积有最大值是4,此时,P(-2,3);(3)存在,【解析】【分析】(1)根据待定系数法,即可得到答案;(2)设P,过点P作PQ⊥x轴交AC于点Q,则点Q,根(3)根据三角形的面积公式,得到二次函数解析式,即可得到答案;设,则,若以点A、M、N为顶点的三角形与△ABC相似,则或,分别求出t的值,即可得到答案.【详解】(1)∵直线y=x+2与x轴交于点A,与y轴交于点C,∴A(-4,0),C(0,2)∵抛物线y=ax2+bx+c的对称轴是x=且过A(-4,0),C(0,2),∴,解得:∴抛物线解析式为:;(2)设P,过点P作PQ⊥x轴交AC于点Q,如图,∴点Q,∴PQ==,∵=,∴当m=-2时,∆PAC的面积有最大值是4,此时,P(-2,3);(3)∵,∴A(-4,0),C(0,2)B(1,0),∴AB=5,AC=2,BC=,∵,∴AC⊥BC,∵MN⊥x轴,∴若以点A、M、N为顶点的三角形与△ABC相似,则或,设,则,①,∴,解得:②,∴,解得:综上所述:存在使得以点A、M、N为顶点的三角形与△ABC相似.【点睛】本题主要考查二次函数的图象与相似三角形的综合,分类讨论思想和数形结合的思想方法,是解题的关键.14.(1)见解析;(2);(3)①或;②或【解析】【分析】(1)连接DO,如图,先根据角平分线的定义以及平行线的性质,得出∠1=∠3,从而得到DO∥BC,再根据∠C=90°,可得出结果;(2)连接FO,根据E为中点,可以得出,在Rt△AOD中,可以求出sinA的值,从而得出∠A的度数,再证明△BOF为等边三角形,从而得出∠BOF的度数,根据弧长公式可得出结果;(3)①设圆的半径为r,过作于,则,四边形是矩形.再证明,得出,据此列方程求解;②作出点F关于BD的对称点F′,连接DE,DF,DF′,FF′,再证明,最后根据相似三角形的面积比等于相似比的平方求解.【详解】(1)证明:连结,∵平分,∴,∵,∴.∴.∴.∵,∴.∴是的切线.(2)解:∵是中点,∴.∴,∴,.连接FO,又BO=OF,∴△BOF为等边三角形,∴.∴.(3)解:①过作于,则,四边形是矩形.设圆的半径为,则,.∵,∴.而,∴.∴即,解之得,.②作出点F关于BD的对称点F′,连接FF′,DE,DF,DF′,∵∠EBD=∠FBD,∴.∵是直径,∴,而、关于轴对称,∴,,DF=DF′,∴DE∥FF′,DE=DF′,∠DEF′=∠DF′E,∴,∴.当时,,,,由①知,而,∴.又易得△BCD∽△BDE,∴,∴BD2=.在Rt△BED中,DE2=BE2-BD2=4-=,∴DE==DF′.∴与的面积比.同理可得,当时,与的面积比.∴与的面积比为或.【点睛】本题是圆与相似的综合题,主要考查切线的判定,弧、弦长与圆周角的关系,弧长的求法,相似三角形的判定与性质,等边三角形的判定与性质,平行线的判定与性质等知识,解题的关键是根据题意作出辅助线再求解.15.(1),;(2);(3).【解析】【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)作轴于K,轴于L,OD=3OE,则OL=3OK,DL=3KE,设点E的横坐标为t,则点D的横坐标为-3t,则点E、D的坐标分别为:(t,)、(-3t,-+3t+),即可求解;(3)设点的横坐标为,可得PH=m2+m-,过作EF∥y轴交于点交轴于点,TE=PH+YE=m2+m-+2=(m+1)2,tan∠AHE=,tan∠PET=,而∠AHE+∠EPH=2α,故∠AHE=∠PET=∠EPH=α,PH=PQ•tanα,即m2+m-=(2m+2)×,解得:m=2-1,故YH=m+1=2,PQ=4,点P、Q的坐标分别为:(2-1,4)、(-2-1,4),tan∠YHE=,tan∠PQH=;证明△PMH≌△WNH,则PH=WH,而QH=2PH,故QW=HW,即W是QH的中点,则W(-1,2),再根据待定系数法即可求解.【详解】解:(1)把、分别代入得:,解得;(2)如图2,由(1)得,作轴于K,轴于L,∴EK∥DL,∴.∵,∴,设点的横坐标为,,,∴的横坐标为,分别把和代入抛物线解析式得,∴,∴,.∵,∴,∴,∴,∴,解得(舍),,∴.(3)如图3,设点的横坐标为,把代入抛物线得,∴.过作EF∥y轴交于点交轴于点,∴轴.∵点与点关于抛物线的对称轴对称,∴PQ∥x轴,,∴,点坐标为,又∵轴,∴ET∥PH,∴,∴,∴四边形为矩形,∴,∴,∴,,,∴.∴,,∴,∴.又∵,∴.∵,∴解得,∵,∴.∴,,把代入抛物线得,∴,∴,∴,∴,∴,∴,∴.若交于点,∵NF∥PE,∴,∴,∵,∴,∴,,,∴,∴,∴.作WS∥PQ,交于点交轴于点,∴△WSH∽△QPH,∴.∵∴,∴,,∴.∵,∴,∴.设的解析式为,把、代入得,解得,∴.∵FN∥PE,∴设的解析式为,把代入得,∴的解析式为.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形等,其中(3)证明△PMH≌△WNH是解题的关键.16.(1)20;(2)①见解析;②存在,CE=;(3)tan∠C的值为或.【解析】【分析】(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°;(2)①如图1,设∠=ABD∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如图2所示,当∠ABD=∠DBC=β时,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如图3所示,当∠ABD=∠C=β时,AF∶EF=AG∶GE=2∶3,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【详解】解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠=ABD∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=4,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=4﹣=;(3)①如图2所示,当∠ABD=∠DBC=β时,则AE⊥BF,则AF=FE=3,则AE=6,AB=BE=5,过点A作AH⊥BC于点H,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,则tan2β=,则tanα=;②如图3所示,当∠ABD=∠C=β时,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,则EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF∶EF=AG∶GE=2∶3,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,则cos∠ABD=cosβ===cosC,则tanC=;综上,tan∠C的值为或.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质,三角函数值等知识.属于圆的综合题,解决本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.17.(1),;(2)①不存在,理由详见解析;②存在,【解析】【分析】(1)先确定A、B、C的坐标,然后用待定系数法解答即可;(2)①可用t的代数式表示DF,然后根据DF=BC求出t的值,得到DF与CB重合,因而不存在t,使得四边形DFBC为平行四边形;②可分两种情况(点Q在线段BC上和在线段BC的延长线上)讨论,由于DE∥QC,要使以点D、E、Q、C为顶点的四边形为平行四边形,只需DE=QC,只需将DE、QC分别用的式子表示,再求出t即可解答.【详解】解:(1)由题意得,,,反比例函数为,一次函数为:.(2)①不存在.轴,轴,.又四边形是平行四边形,.设,则,,.此时与重合,不符合题意,不存在.②存在.当时,;当时,由,,得.由,.得.当时,四边形为平行四边形..,(舍)当时,四边形为平行四边形.又且,为矩形.【点睛】本题主要考查了用待定系数法求反比例函数和一次函数的解析式以及平行四边形的判定、解方程、根的判别式等知识,在解答以点D、E、Q、C为顶点的四边形的四个顶点的顺序不确定,需要分情况讨论是解答本题的关键.18.(1)见解析;(2);(3)或或【解析】【分析】(1)由四边形内角和定理求出∠B=60°,由AB=BC,即可得出结论;(2)以CD为边作等边,连接BE,过点E作EF⊥BC于F,证(SAS),得AC=BE,求出∠CEF=30°,由直角三角形的性质得出CF=由勾股定理求出EF=再由勾股定理即可得出答案;(3)过点C作CH⊥AB,交AB延长线于H,设BH=x,求出∠BCH=30°,由直角三角形的性质得出HC=,BC=2BH=2x,证是等腰直角三角形,则HA=HC,,解得,进而得出AC的长,分三种情况,①当AB=AD=∠BAD=60°时,②当BC=CD=∠BCD=60°时,③当AD=CD=AC=,∠ADC=60°时,分别求解即可.【详解】解:(1)在四边形中,∵,∴∵∴四边形是“准筝形”(2)如图,以为边作等边,连结过点E作EF⊥BC于F,则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在和中,,∴(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°-60°-60°=60°,∵∠EFC=90°,∴∠CEF=30°,∴CF=C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年吉林交通职业技术学院单招职业适应性考试模拟试题及答案解析
- 2026年河南科技职业大学单招职业适应性考试模拟试题及答案解析
- 2026年莆田学院单招职业适应性考试模拟试题及答案解析
- 医疗保险市场发展趋势与政策分析
- 医疗卫生政策与医疗政策效果评价方法研究
- 生物医学材料研究与应用前景
- 手术护理与无菌操作规程
- 校内测量实习总结(23篇)
- 继发性腹内疝的护理
- 2026年教师资格证(生物学科知识与教学能力-高级中学)自测试题及答案
- JGJT303-2013 渠式切割水泥土连续墙技术规程
- 埃森哲组织架构
- 三里坪小学2014秋季期末成绩汇总表
- 三角形的内角和与外角和教案
- 2020北京丰台六年级(上)期末英语(教师版)
- 建筑冷热源课程设计说明书
- 2022-2023学年北京市大兴区高一(上)期末数学试卷及答案解析
- 教练场地技术条件说明
- 高三英语阅读理解:文章标题型
- 石油开采-潜油电泵采油优秀PPT
- 《乡土中国》 《无讼》课件
评论
0/150
提交评论