四川省合江县马街中学校2026届高三上学期第二次诊断性模拟考试数学试卷(含答案)_第1页
四川省合江县马街中学校2026届高三上学期第二次诊断性模拟考试数学试卷(含答案)_第2页
四川省合江县马街中学校2026届高三上学期第二次诊断性模拟考试数学试卷(含答案)_第3页
四川省合江县马街中学校2026届高三上学期第二次诊断性模拟考试数学试卷(含答案)_第4页
四川省合江县马街中学校2026届高三上学期第二次诊断性模拟考试数学试卷(含答案)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高2023级高三第二次教学质量诊断性模拟考试数学试题注意事项:答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。2.考生必须保持答题卡的整洁。第=1\*ROMANI卷选择题(58分)一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则A. B.C. D.2.下列命题为真命题的是A.若,则 B.若,则C.若,则 D.若,则3.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.记为等差数列的前n项和.若则A. B. C. D.5.已知,且满足,则在上的投影向量为A. B. C. D.6.已知的展开式中,前三项的系数依次成等差数列,则展开式中二项式系数最大的项是A. B. C. D.7.某电视台计划在春节期间某段时间连续播放6个广告,其中3个不同的商业广告和3个不同的公益广告,要求第一个和最后一个播放的必须是公益广告,且商业广告不能3个连续播放,则不同的播放方式有A.144种 B.72种 C.36种 D.24种8.已知的定义域为,且,则A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。9.若z是非零复数,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则10.某校在运动会期间进行了一场“不服来战”对抗赛,由篮球专业的1名体育生组成甲组,3名非体育生的篮球爱好者组成乙组,两组进行对抗比赛.具体规则为甲组的同学连续投球3次,乙组的同学每人各投球1次.若甲组同学和乙组3名同学的命中率依次分别为,则A.乙组同学恰好命中2次的概率为B.甲组同学恰好命中2次的概率小于乙组同学恰好命中2次的概率C.甲组同学命中次数的方差为D.乙组同学命中次数的数学期望为11.在三棱锥中,平面平面,,则A.三棱锥的体积为1B.点到直线AD的距离为C.二面角的正切值为2D.三棱锥外接球的球心到平面的距离为第=2\*ROMANII卷非选择题(92分)三、填空题:本题共3小题,每小题5分,共15分.12.计算:.13.函数()的最大值是.14.过双曲线:右焦点作直线,且直线与双曲线的一条渐近线垂直,垂足为A,直线与另一条渐近线交于点B.且点A,B位于x轴的异侧,O为坐标原点,若的内切圆的半径为,则双曲线C的离心率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)某市统计了2025年4月的空气质量指数(AQI),将其分为,,,的4组,画出频率分布直方图如图所示.若,称当天空气质量达标;若,称当天空气质量不达标.(1)求;(2)从4月的30天中任取2天,求至少有1天空气质量达标的概率;(3)若2025年6月的30天中有8天空气质量达标,请完成下面2×2列联表,根据小概率值的独立性检验,能否认为空气质量是否达标与月份有关联?月份空气质量合计达标不达标4月6月合计附:,0.10.050.012.7063.8416.63516.(15分)如图,直三棱柱的体积为4,的面积为.(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.17.(15分)如图,在中,,,,点D在边BC的延长线上.(1)求的面积;(2)若,,求CE的长.18.(17分)已知椭圆()的离心率为,其上焦点与抛物线的焦点重合.

(1)求椭圆的方程;(2)若过点的直线交椭圆于点,同时交抛物线于点(如图1所示,点在椭圆与抛物线第一象限交点上方),试比较线段与长度的大小,并说明理由;(3)若过点的直线交椭圆于点,过点与直线垂直的直线交抛物线于点(如图2所示),试求四边形面积的最小值.19.(17分)设函数,曲线在点处的切线方程为.(1)求的值;(2)设函数,求的单调区间;(3)求的极值点个数.

高2023级高三第二次教学质量诊断性模拟考试数学试题参考答案一.单选题题号12345678答案CBABDCBB二.多选题题号91011答案BCDBCDACD三.填空题12.13.114.四.解答题15.解:(1)依题意得,,·······································3分解得.··············································································4分(2)由频率分布直方图知,4月份的空气质量达标的天数为:,·································5分则4月份的空气质量不达标的天数为:,···············································6分则任取2天,至少有1天空气质量达标的概率为:.··································8分(3)列联表如下:···········································································10分月份空气质量合计达标不达标4月1218306月82230合计204060零假设:空气质量是否达标与月份无关,则·····································12分所以根据小概率值的独立性检验,没有充分理由推断假设不成立,故不能认为空气质量是否达标与月份有关联.····················································13分16.解:(1)在直三棱柱中,设点A到平面的距离为h,则,································3分解得,·················································································5分所以点A到平面的距离为;····························································6分(2)取的中点E,连接AE,如图,因为,所以,又平面平面,平面平面,·······································7分且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,·····································8分又平面且相交,所以平面,·········································9分所以两两垂直,以B为原点,建立空间直角坐标系,如图,·····························10分由(1)得,所以,,所以,则,所以的中点,则,,·····················································11分设平面的一个法向量,则,可取,···········································································12分设平面的一个法向量,则,可取,···········································································13分则,···························································14分所以二面角的正弦值为.···············································15分17.解:(1)中,,··························2分因为,,所以,····················································3分所以,因为,·································································5分所以;···································7分(2)方法1:因为,所以,所以,则.················································································9分方法2:在中,由余弦定理得,因为为线段上靠近的三等分点,所以,·············································································11分因为,所以,···········································································12分因为为锐角,所以,························································13分在中,由余弦定理得,,·····························14分所以.············································································15分18.解:(1)由题意得,即:,又,所以,·······························2分由,得,所以椭圆的方程为.···········································3分(2)由题意得过点的直线的斜率存在,设直线方程为,设,,,,联立,消去得:,·············································4分则,,所以.·······································5分抛物线的方程为:,联立,消去得:,则,所以,······················································7分所以,·············································8分即.················································································9分(3)设,,,,当直线的斜率存在且不为零时,设直线方程为,则直线方程为,由(2)的过程可知:,·······················································11分由,以替换,可得,·········································12分所以,·································································14分因为,所以,,;················15分当直线的斜率不存在时,,,所以;·····················································16分综上所述:,所以四边形面积的最小值为.··································17分19.解:(1)因为,所以,··························1分因为在处的切线方程为,·所以,,·······························································2分则,解得,···························································3分所以.(2)由(1)得,则,················4分令,解得,不妨设,,则,易知恒成立,所以令,解得或;令,解得或;所以在,上单调递减,在,上单调递增,即的单调递减区间为和,单调递增区间为和.··········7分(3)由(1)得,,由(2)知在,上单调递减,在,上单调递增,当时,,,即所以在上存在唯一零点,不妨设为,则,此时,当时,,则单调递减;当时,,则单调递增;所以在上有一个极小值点;·························································10分当时,在上单调递减,则,故,所以在上存在唯一零点,不妨设为,则,此时,当时,,则单调递增;当时,,则单调递减;所以在上有一个极大值点;··························································12分当时,在上单调递增,则,故,所以在上存在唯一零点,不妨设为,则,此时,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论