版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省唐山一中数学高二上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,则的值为()A. B.C. D.2.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.503.斗笠,用竹篾夹油纸或竹叶粽丝等编织,是人们遮阳光和雨的工具.某斗笠的三视图如图所示(单位:),若该斗笠水平放置,雨水垂直下落,则该斗笠被雨水打湿的面积为()A. B.C. D.4.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.5.在数列中,,,则()A.985 B.1035C.2020 D.20706.在棱长为1的正方体中,点,分别是,的中点,点是棱上的点且满足,则两异面直线,所成角的余弦值是()A. B.C. D.7.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支8.已知函数,若对任意的,,且,总有,则的取值范围是()A B.C. D.9.已知等比数列满足,则q=()A.1 B.-1C.3 D.-310.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,11.己知命题;命题,则下列命题中为假命题的是()A. B.C. D.12.命题“,”否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递减区间是___________.14.在等差数列中,前n项和记作,若,则______15.已知数列则是这个数列的第________项.16.椭圆的右焦点是,两点是椭圆的左顶点和上顶点,若△是直角三角形,则椭圆的离心率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求.18.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求19.(12分)设,已知函数(1)若,求函数在处切线的方程;(2)求函数在上的最大值20.(12分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.21.(12分)已知一张纸上画有半径为4的圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.22.(10分)如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B2、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A3、A【解析】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,则所求面积积为圆锥的侧面积与圆环的面积之和【详解】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,所以该斗笠被雨水打湿的面积为,故选:A4、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B5、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A6、A【解析】建立空间直角坐标系,写出点、、、和向量的、坐标,运用求异面直线余弦值的公式即可求出.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,,故,,,故两异面直线,所成角的余弦值是.故选:A.【点睛】本题考查求异面直线所成角的余弦值,属于中档题.7、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A8、B【解析】根据函数单调性定义、二次函数性质及对称轴方程,即可求解参数取值范围.【详解】依题意可得,在上为减函数,则,即的取值范围是故选:B【点睛】本题考查函数单调性定义,二次函数性质,属于基础题.9、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.10、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.11、A【解析】根据或且非命题的真假进行判断即可.【详解】当,故命题是真命题,,故命题是真命题.因此可知是假命题,是真命题,,均为真命题.故选:A12、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先对求导,可得,令,解可得答案【详解】解:由得,故的单调递减区间是故答案为:【点睛】本题考查利用导数研究函数的单调性,属于基础题.14、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:15、12【解析】根据被开方数的特点求出数列的通项公式,最后利用通项公式进行求解即可.【详解】数列中每一项被开方数分别为:6,10,14,18,22,…,因此这些被开方数是以6为首项,4为公差的等差数列,设该等差数列为,其通项公式为:,设数列为,所以,于是有,故答案为:16、【解析】由题设易知,应用斜率的两点式及椭圆参数关系可得,进而求椭圆离心率.【详解】由题设,,,,又△是直角三角形,显然,所以,可得,则,解得,又,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1280【解析】(1)直接利用等差数列通项公式即可求解;(2)先判断出数列单调性,由,则时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】设数列的公差为,由,可知,∴;【小问2详解】由(1)知,数列为单调递减数列,由,则时,,时,;.18、(1),(2)4【解析】(1)根据,即可将直线的极坐标方程转化为普通方程;消参数,即可求出曲线的普通方程;(2)由题意易知,求出直线的参数方程,将其代入曲线的普通方程,利用一元二次方程根和系数关系式的应用,即可求出结果【小问1详解】解:直线极坐标方程为,即,又,可得的普通方程为,曲线的参数方程是(为参数,消参数,所以曲线的普通方程为【小问2详解】解:在中令得,,倾斜角,的参数方程可设为,即(为参数),将其代入,得,,设,对应的参数分别为,,则,,,异号,.19、(1)(2)当0≤a<2时,f(x)max=8-5a;当a≥2时,f(x)max=-a【解析】(1)根据导数的几何意义即可求解;(2)先求函数的导数,令导数等于零,求得两极值点,然后讨论极值点是否在所给区间内,再结合比较区间端点处的函数值的大小,可得答案.【小问1详解】因为,所以,即a=0,所以,f(1)=1,所以切线方程:y-1=3(x-1),即.【小问2详解】,令得,①当a=0时,f(x)=x3在[0,2]上为单调递增函数,所以f(x)max=f(2)=8;②当时,即a≥3时,f(x)在[0,2]上为单调递减函数,所以;③当时,即0<a<3时,f(x)在上单调递减,在单调递增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;综上,当0≤a<2时,f(x)max=f(2)=8-5a;当a≥2时,f(x)max=f(0)=-a20、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)设直线的方程为,由得,①设、的坐标分别为,(),中点为,则,,因为是等腰△的底边,所以所以的斜率为,解得,此时方程①为解得,,所以,,所以,此时,点到直线:距离,所以△的面积考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离.【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键21、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天津仁爱学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年洛阳职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2025年焦作师范高等专科学校马克思主义基本原理概论期末考试真题汇编
- 2025年厦门软件职业技术学院马克思主义基本原理概论期末考试笔试题库
- 河南省驻马店市部分学校2025-2026学年高二上学期10月月考政治试题(解析版)
- 康复护理培训汇报
- 智能家居系统集成实施方案
- 家居建材团购活动方案
- 远程办公2026年融资合同协议
- 2026年医疗信息化系统合作协议
- 教育教学微型课题申请·评审表
- 上海交通大学《大学英语》2021-2022学年期末试卷
- 职业技术学院《建筑力学与结构》课程标准
- 翻译技术实践智慧树知到期末考试答案章节答案2024年山东师范大学
- JJG 621-2012 液压千斤顶行业标准
- 供电一把手讲安全课
- 本科实习男护生职业认同感调查及影响因素分析
- 未分化型精神分裂症的护理查房
- GB 31604.1-2023食品安全国家标准食品接触材料及制品迁移试验通则
- 工控组态技术及应用-MCGS模块三MCGS模拟量组态基本知识课件
- YC/T 405.2-2011烟草及烟草制品多种农药残留量的测定第2部分:有机氯和拟除虫菊酯农药残留量的测定气相色谱法
评论
0/150
提交评论