2026届达州市重点中学高一数学第一学期期末监测试题含解析_第1页
2026届达州市重点中学高一数学第一学期期末监测试题含解析_第2页
2026届达州市重点中学高一数学第一学期期末监测试题含解析_第3页
2026届达州市重点中学高一数学第一学期期末监测试题含解析_第4页
2026届达州市重点中学高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届达州市重点中学高一数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=-4x+2x+1的值域是()A. B.C. D.2.不等式的解集是()A B.C.或 D.或3.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.4.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x5.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.156.已知集合,,则()A B.C. D.{1,2,3}7.已知集合,,,则实数a的取值集合为()A. B.C. D.8.若函数在区间上单调递增,则实数的取值范围为()A B.C. D.9.函数的最大值是()A. B.1C. D.210.在长方体中,,则异面直线与所成角的大小是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则12.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.13.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______14.已知直线,则与间的距离为___________.15.设函数的定义域为D,若存在实数,使得对于任意,都有,则称为“T—单调增函数”对于“T—单调增函数”,有以下四个结论:①“T—单调增函数”一定在D上单调递增;②“T—单调增函数”一定是“—单调增函数”(其中,且):③函数是“T—单调增函数”(其中表示不大于x的最大整数);④函数不“T—单调增函数”其中,所有正确的结论序号是______16.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)若,求的单调区间;(2)若有最大值3,求实数的值.18.已知函数是定义在R上的偶函数,当时,.(1)求函数的解析式;(2)画出函数的图像;(3)根据图像写出的单调区间和值域.19.已知函数(1)若在区间上有最小值为,求实数m的值;(2)若时,对任意的,总有,求实数m的取值范围20.设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.21.已知(),求:(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【点睛】本题考查利用换元法及二次函数求值域,是基础题2、D【解析】将分式不等式移项、通分,再转化为等价一元二次不等式,解得即可;【详解】解:∵,,即,等价于且,解得或,∴所求不等式的解集为或,故选:D.3、A【解析】作出图形,由向量加法的三角形法则得出可得出答案.【详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【点睛】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.4、C【解析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.5、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积6、A【解析】利用并集概念进行计算.【详解】.故选:A7、C【解析】先解出集合A,再根据确定集合B的元素,可得答案.【详解】由题意得,,∵,,∴实数a的取值集合为,故选:C.8、C【解析】函数为复合函数,先求出函数的定义域为,因为外层函数为减函数,则求内层函数的减区间为,由题意知函数在区间上单调递增,则是的子集,列出关于的不等式组,即可得到答案.【详解】的定义域为,令,则函数为,外层函数单调递减,由复合函数的单调性为同增异减,要求函数的增区间,即求的减区间,当,单调递减,则在上单调递增,即是的子集,则.故选:C.9、C【解析】利用正余弦的差角公式展开化简即可求最值.【详解】,∵,∴函数的最大值是.故选:C.10、C【解析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).12、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.13、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.14、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.15、②③④【解析】①③④选项可以举出反例;②可以进行证明.【详解】①例如,定义域为,存在,对于任意,都有,但在上不单调递增,①错误;②因为是单调增函数,所以存在,使得对于任意,都有,因为,,所以,故,即存在实数,使得对于任意,都有,故是单调增函数,②正确;③,定义域为,当时,对任意的,都有,即成立,所以是单调增函数,③正确;④当时,,若,则,显然不满足,故不是单调增函数,④正确.故答案为:②③④16、(1)(3)【解析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【点睛】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)递减区间为,递增区间;(2).【解析】(1)当时,设,根据指数函数和二次函数的单调性,结合复合函数的单调性,即可求解;(2)由题意,函数,分,和三种情况讨论,结合复合函数的单调性,即可求解.【详解】(1)当时,,设,则函数开口向下,对称轴方程为,所以函数在单调递增,在单调递减,又由指数函数在上为单调递减函数,根据复合函数的单调性,可得函数在单调递减,在单调递增,即函数的递减区间为,递增区间.(2)由题意,函数,①当时,函数,根据复合函数的单调性,可得函数在上为单调递增函数,此时函数无最大值,不符合题意;②当时,函数,根据复合函数单调性,可得函数在在单调递增,在单调递减,当时,函数取得最大值,即,解得;③当时,函数,根据复合函数的单调性,可得函数在在单调递减,在单调递增,此时函数无最大值,不符合题意.综上可得,实数的值为.【点睛】本题主要考查了指数函数的图象与性质,以及复合函数的单调性的判定及应用,其中解答中熟记指数函数的图象与性质,二次函数的性质,以及复合函数的单调性的判定方法是解答的关键,着重考查推理与运算能力,属于中档试题.18、(1)(2)图像见解析(3)答案见解析【解析】(1)根据偶函数的性质即可求出;(2)根据解析式即可画出图像;(3)根据图像可得出.【小问1详解】因为是定义在R上的偶函数,当时,,则当时,,则,所以;【小问2详解】画出函数图像如下:【小问3详解】根据函数图像可得,的单调递减区间为,单调递增区间为,函数的值域为.19、(1)或;(2).【解析】(1)可知的对称轴为,讨论对称轴的范围求出最小值即可得出;(2)不等式等价于,求出最大值和最小值即可解出.【详解】(1)可知的对称轴为,开口向上,当,即时,,解得或(舍),∴当,即时,,解得,∴综上,或(2)由题意得,对,∵,,∴,∴,解得,∴【点睛】本题考查含参二次函数的最值问题,属于中档题.20、(1);(2)(-∞,-2)∪(0,2)【解析】(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论