2026届上海市上外附中数学高一上期末教学质量检测试题含解析_第1页
2026届上海市上外附中数学高一上期末教学质量检测试题含解析_第2页
2026届上海市上外附中数学高一上期末教学质量检测试题含解析_第3页
2026届上海市上外附中数学高一上期末教学质量检测试题含解析_第4页
2026届上海市上外附中数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海市上外附中数学高一上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.所在平面 B.

所在平面C.所在平面 D.所在平面2.设,,且,则A. B.C. D.3.方程的解所在的区间是A B.C. D.4.已知函数,则的最大值为()A. B.C. D.5.已知函数对任意都有,则等于A.2或0 B.-2或0C.0 D.-2或26.下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是()A. B.C. D.7.已知x是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.设,则下列不等式一定成立的是()A B.C. D.10.已知偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.12.已知函数,若,则______.13.若直线:与直线:互相垂直,则实数的值为__________14.已知,,则函数的值域为______15.函数的单调减区间为__________16.已知,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①f(x)是偶函数;②是f(x)的图象在y轴右侧的第一个对称中心;③f(x)相邻两条对称轴之间距离为.这三个条件中任选两个,补充在下面问题的横线上,并解答.已知函数f(x)=sin(x+)(>0,0<<π),满足________.(1)求函数f(x)的解析式;(2)将函数y=f(x)图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标变为原来的2倍后所得到的图象对应的函数记作y=g(x);若函数F(x)=f(x)+kg(x)在(0,nπ)内恰有2021个零点,求实数k与正整数n的值.18.已知a、b>0且都不为1,函数f(1)若a=2,b=12,解关于x的方程(2)若b=2a,是否存在实数t,使得函数gx=tx+log2f19.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.20.已知函数f(x)=x-(1)讨论并证明函数f(x)在区间(0,+∞)的单调性;(2)若对任意的x∈[1,+∞),f(mx)+mf(x)<0恒成立,求实数m的取值范围21.设集合,,求,

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】本题为折叠问题,分析折叠前与折叠后位置关系、几何量的变与不变,可得HA、HE、HF三者相互垂直,根据线面垂直的判定定理,可判断AH与平面HEF的垂直【详解】根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,D不正确故选B【点睛】本题考查直线与平面垂直的判定,一般利用线线⇔线面⇔面面,垂直关系的相互转化判断2、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围3、C【解析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.考点:函数与方程.4、D【解析】令,可得出,令,证明出函数在上为减函数,在上为增函数,由此可求得函数在区间上的最大值,即为所求.【详解】令,则,则,令,下面证明函数在上为减函数,在上为增函数,任取、且,则,,则,,,,所以,函数在区间上为减函数,同理可证函数在区间上为增函数,,,.因此,函数的最大值为.故选:D.【点睛】方法点睛:利用函数的单调性求函数最值的基本步骤如下:(1)判断或证明函数在区间上的单调性;(2)利用函数的单调性求得函数在区间上的最值.5、D【解析】分析:由条件可得,函数f(x)的图象关于直线x=对称,故f()等于函数的最值,从而得出结论详解:由题意可得,函数f(x)的图象关于直线x=对称,故f()=±2,故答案为±2点睛:本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.一般函数的对称轴为a,函数的对称中心为(a,0).6、D【解析】函数定义域为当时,是减函数;当时,是增函数;故选D7、A【解析】解一元二次不等式得或,再根据集合间的基本关系,即可得答案;【详解】或,或,反之不成立,“”是“”的充分不必要条件,故选:A.8、D【解析】由求出,结合不等式性质即可求解.【详解】,,,在第四象限.故选:D9、D【解析】对ABC举反例判断即可;对D,根据函数的单调性判断即可【详解】对于A,,,选项A错误;对于B,,时,,不存在,选项B错误;对于C,由指数函数的单调性可知,选项C错误;对于D,由不等式性质可得,选项D正确故选:D10、B【解析】由题得函数在上单调递减,且,再根据函数的图象得到,解不等式即得解.【详解】因为偶函数在上单调递增,且,所以在上单调递减,且,因为,所以,所以.故选:B【点睛】本题主要考查函数的单调性和奇偶性的应用,意在考查学生对这些知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出定点的坐标,再代入幂函数,即可求出解析式.【详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【点睛】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.12、16或-2【解析】讨论和两种情况讨论,解方程,求的值.【详解】当时,,成立,当时,,成立,所以或.故答案为:或13、-2【解析】由于两条直线垂直,故.14、【解析】,又,∴,∴故答案为15、##【解析】由幂函数、二次函数的单调性及复合函数单调性的判断法则即可求解.【详解】解:函数的定义域为,令,,,因为函数在上单调递增,在上单调递减,在上单调递增,所以函数的单调减区间为,单调增区间为.故答案为:.16、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)根据三角函数的图象和性质,求出和的值即可,(2)根据函数图象变换关系,求出以及的解析式,根据函数零点性质建立方程进行讨论求解即可【小问1详解】解:①是偶函数;②,是的图象在轴右侧的第一个对称中心;③相邻两条对称轴之间距离为若选择①②,由①是偶函数,即,由②,是的图象在轴右侧的第一个对称中心;则,得,即选择①③:由①是偶函数,即,由③知:相邻两条对称轴之间距离为,即,则,则,则若选②③:③知:相邻两条对称轴之间距离为,即,则,则,则,由②,是的图象在轴右侧的第一个对称中心;,得,则,综上【小问2详解】解:依题意,将函数的图象向右平移个单位,得,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍得到,可得,所以,当时,,则在内的零点个数为偶数个,在内恰有2021个零点,为奇数个零点,故,令,可得,令,,则,△,则关于的二次方程必有两个不等的实根,,,且,则,异号,①当,且时,则方程和在区间,均有偶数个根,从而在区间,有偶数个根,不符合题意;②当,且时,则方程在区间有偶数个根,无解,从而方程在有偶数个根,不合题意同理,当且时,从而方程在有偶数个根,不合题意③当,,当时,只有一根,有两根,所以关于的方程在有三个根,由于,则方程在只有一个根,在区间上无实解,方程在区间上无实解,在区间上有两个根所以关于的方程在区间上有2020个根.在区间上有2022个根.不合题意④当时,则,当时,只有一根,有两根,所以关于的方程在上有三个根,由于,则方程在上有个根由于方程在区间上无实数根,在区间上只有一个实数根由于方程在区间上有两个实数根,在区间上只有一个实数根因此关于的方程在上有2021个根,在区间上有2022个根,因此所以解得,18、(1)x=-(2)存,t=-1【解析】(1)根据题意可得2x(2)由题意可得gx=tx+log21+2【小问1详解】因为a=2,b=12,所以方程fx=fx+1化简得2x=2-x-1,所以【小问2详解】因为b=2a,故fxgx因为gx是偶函数,故g-x=g而g-x于是tx=-t+1x对任意的实数x19、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.20、(1)函数f(x)在(0,+∞)上单调递增,见解析(2)m<-1【解析】1利用单调性的定义,根据步骤,取值,作差,变形,定号下结论,即可得到结论;2原不等式等价于2mx-1mx-mx<0对任意的x∈[1,+∞)恒成立,整理得2mx2解析:(1)函数f(x)在(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论