版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区西城外国语学校2026届数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.3.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台4.已知集合,.则()A. B.C. D.5.下列关于函数,的单调性的叙述,正确的是()A.在上是增函数,在上是减函数B.在和上是增函数,在上是减函数C.在上是增函数,在上是减函数D.在上是增函数,在和上是减函数6.已知函数为奇函数,则()A.-1 B.0C.1 D.27.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8318.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.在中,“”是“”的()A.充要条件 B.充分非必要条件C必要非充分条件 D.既非充分又非必要条件10.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=0二、填空题:本大题共6小题,每小题5分,共30分。11.天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景的摩天轮.如图,已知天津之眼的半径是55m,最高点距离地面的高度为120m,开启后按逆时针方向匀速转动,每30转动一圈.喜欢拍照的南鸢同学想坐在天津之眼上拍海河的景色,她在距离地面最近的舱位进舱.已知在距离地面超过92.5m的高度可以拍到最美的景色,则在天津之眼转动一圈的过程中,南鸢同学可以拍到最美景色的时间是_________分钟12.已知与之间的一组数据如下,且它们之间存在较好的线性关系,则与的回归直线方程必过定点__________13.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________14.已知幂函数的定义域为,且单调递减,则________.15.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是__________16.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值18.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.19.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.20.已知函数.(1)当时,解不等式;(2)设,若,,都有,求实数a的取值范围.21.(1)已知是角终边上一点,求,,的值;(2)已知,求下列各式的值:①;②
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.2、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B3、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.4、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.5、D【解析】根据正弦函数的单调性即可求解【详解】解:因为的单调递增区间为,,,单调递减区间为,,,又,,所以函数在,上是增函数,在,和,上是减函数,故选:D6、C【解析】利用函数是奇函数得到,然后利用方程求解,,则答案可求【详解】解:函数为奇函数,当时,,所以,所以,,故故选:C.7、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A8、C【解析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.9、A【解析】结合三角形内角与充分、必要条件的知识确定正确选项.【详解】在中,,所以,所以在中,“”是“”的充要条件.故选:A10、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】借助三角函数模型,设,以轴心为原点,与地面平行的直线为轴,建立直角坐标系,由题意求出解析式,再令,解三角不等式即可得答案.【详解】解:如图,设座舱距离地面最近的位置为点,以轴心为原点,与地面平行的直线为轴,建立直角坐标系.设时,南鸢同学位于点,以为终边的角为,根据摩天轮转一周大约需要,可知座舱转动的角速度约为,由题意,可得,,令,,可得,所以南鸢同学可以拍到最美景色的时间是分钟,故答案为:10.12、【解析】因为与的回归直线方程必过定点则与的回归直线方程必过定点.即答案为.13、3【解析】设铜球的半径为,则,得,故答案为.14、【解析】根据幂函数的单调性,得到的范围,再由其定义域,根据,即可确定的值.【详解】因为幂函数的定义域为,且单调递减,所以,则,又,所以的所有可能取值为,,,当时,,其定义域为,不满足题意;当时,,其定义域为,满足题意;当时,,其定义域为,不满足题意;所以.故答案为:15、①【解析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.16、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果;(2)结合正弦型函数图象,解三角不等式即可求出结果;(3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果.【小问1详解】因为的最大值为1,所以的最大值为,依题意,,解得【小问2详解】由(1)知,由,得所以解得所以,使成立的x取值集合为【小问3详解】依题意,,因为是的一个零点,所以,所以所以,因为,所以,所以t的最大值为18、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【点睛】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不等式,导数证明不等式,属于较难题.19、(1),,,;(2)零点为;(3)答案见解析.【解析】(1)根据解析式直接计算即可;(2)由可解得结果;(3)由(1)易知为非奇非偶函数,用定义证明是上的减函数.【详解】(1),,,.(2)令得,故,即函数的零点为.(3)由(1)知,,且,故为非奇非偶函数;是上的减函数.证明如下:()任取,且,则,因为当时,,则,又,,所以,即,故函数是上的减函数.20、(1),(2)【解析】(1)由同角关系原不等式可化为,化简可得,结合正弦函数可求其解集,(2)由条件可得在上的最大值小于或等于在上的最小值,利用单调性求的最大值,利用换元法,通过分类讨论求的最小值,由此列不等式求实数a的取值范围.【小问1详解】由得,,当时,,由,而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 搬运承包协议书
- 返还原物协议书
- 2025 年大学食品质量与安全(食品安全学概论)试题及答案
- 2025 年大学数控加工(数控车工)(编程与加工)试题及答案
- 2025 年大学时尚设计与工程(发型艺术)试题及答案
- 老宅兑换协议书
- 美团的合同范本
- 空调使用协议书
- 2025 年大学生物学(遗传学)试题及答案
- 解冻账户协议书
- 2025江苏苏州市昆山开发区招聘编外辅助人员29人(公共基础知识)综合能力测试题附答案解析
- 2025广西柳州城市职业学院人才招聘28人(公共基础知识)测试题附答案解析
- 广东省珠海市香洲区2023-2024学年九年级上学期语文期末试卷(含答案)
- 企业融资规划与预算编制模板
- 2025国际货物销售合同范本
- 2025年山东单招试题归总及答案
- 北京八中2026届高二物理第一学期期末考试模拟试题含解析
- 2026年湖南铁道职业技术学院单招职业技能考试必刷测试卷附答案
- 销售费用申请与报销流程标准化手册
- 高等学府零基预算管理体系深化策略研究
- 小学数学奥赛8-10-火柴棒游戏.教师版
评论
0/150
提交评论