版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏长庆中学2026届高二上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现要完成下列两项调查:①从某社区70户高收入家庭、335户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.这两项调查宜采用的抽样方法是()A①简单随机抽样,②分层抽样 B.①分层抽样,②简单随机抽样C.①②都用简单随机抽样 D.①②都用分层抽样2.直线的倾斜角为A. B.C. D.3.在空间四边形中,,,,且,则()A. B.C. D.4.已知命题:△中,若,则;命题:函数,,则的最大值为.则下列命题是真命题的是()A. B.C. D.5.已知过点的直线与圆相切,且与直线平行,则()A.2 B.1C. D.6.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.7.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.8.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或49.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照,,…,分成9组,制成了如图所示的频率分布直方图.规定成绩低于13秒为优,成绩高于14.8秒为不达标.由直方图推断,下列选项错误的是()A.直方图中a的值为0.40B.由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C.由直方图估计本校高三男生100米体能测试成绩为优的人数为54D.由直方图估计本校高三男生100米体能测试成绩为不达标的人数为1810.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.11.下列函数求导运算正确的个数为()①;②;③;④.A.1 B.2C.3 D.412.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________14.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块.已知每层圈数相同,共有9圈,则下层比上层多______块石板15.曲线在点M(π,0)处的切线方程为________16.若直线l经过A(2,1),B(1,)两点,则l的斜率取值范围为_________________;其倾斜角的取值范围为_________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围18.(12分)已知函数f(x)=x3﹣3ax2+2bx在x=处有极大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.19.(12分)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)过点作轴的平行线交轴于点,过点的直线与椭圆交于两个不同的点、,直线、与轴分别交于、两点,若,求直线的方程;(3)在第(2)问条件下,点是椭圆上的一个动点,请问:当点与点关于轴对称时的面积是否达到最大?并说明理由.20.(12分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.21.(12分)已知等比数列满足,(1)求数列通项公式;(2)记,求数列的前n项和22.(10分)已知椭圆的一个焦点与抛物线的焦点重合,椭圆上的动点到焦点的最大距离为.(1)求椭圆的标准方程;(2)过作一条不与坐标轴垂直的直线交椭圆于两点,弦的中垂线交轴于,当变化时,是否为定值?若是,定值为多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】通过简单随机抽样和分层抽样的定义辨析得到选项【详解】在①中,由于购买能力与收入有关,应该采用分层抽样;在②中,由于个体没有明显差别,而且数目较少,应该采用简单随机抽样故选:B2、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题3、A【解析】利用空间向量的线性运算即可求解.【详解】..故选:A.4、A【解析】由三角形内角及正弦函数的性质判断、的真假,应用换元法令,结合对勾函数的性质确定的值域即知、的真假,根据各选项复合命题判断真假即可.【详解】由且,可得或,故为假命题,为真命题;令,又,则,故,∵在上递减,∴,故的最大值为.∴为真命题,为假命题;∴为真,为假,为假,为假.故选:A.5、C【解析】先根据垂直关系设切线方程,再根据圆心到切线距离等于半径列式解得结果.【详解】因为切线与直线平行,所以切线方程可设为因为切线过点P(2,2),所以因为与圆相切,所以故选:C6、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D7、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C8、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.9、D【解析】根据频率之和为求得,结合众数、频率等知识对选项进行分析,从而确定正确答案.【详解】,解得,A选项正确.众数为,B选项正确.成绩低于秒的频率为,人数为,所以C选项正确.成绩高于的频率为,人数为人,D选项错误.故选:D10、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C11、A【解析】根据导数的运算法则和导数的基本公式计算后即可判断【详解】解:①,故错误;②,故正确;③,故错误;④,故错误.所以求导运算正确的个数为1.故选:A.12、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.##②.【解析】由得到,即可得到数列是首项为1,公差为1的等差数列,从而求出,再根据求出,令,利用裂项相消法求出,即可求出的取值范围,从而得解;【详解】解:由,令,得,,解得;当时,,即因此,数列是首项为1,公差为1的等差数列,,即所以,令,所以,所以,则最大整数为;故答案为:;;14、1458【解析】首先由条件可得第圈的石板为,且为等差数列,利用基本量求和,即可求解.【详解】设第圈的石板为,由条件可知数列是等差数列,且上层的第一圈为,且,所以,上层的石板数为,下层的石板数为.所以下层比上层多块石板.故答案为:145815、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.16、①.②.【解析】根据直线l经过A(2,1),B(1,)两点,利用斜率公式,结合二次函数性质求解;设其倾斜角为,,利用正切函数的性质求解.【详解】因为直线l经过A(2,1),B(1,)两点,所以l的斜率为,所以l的斜率取值范围为,设其倾斜角为,,则,所以其倾斜角的取值范围为,故答案为:,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.18、(1)(2)【解析】(1)由于在点处有极小值,所以,从而可求出、的值;(2)由(1)可得,得在区间上单调递减,在区间上单调递增,从而可求出其值域.【小问1详解】因为函数在处有极大值,所以,①且②联立①②得:;【小问2详解】由(1)得,所以,由得;由得,所以,函数区间上单调递减,在区间上单调递增;又,所以在上的值域为.19、(1);(2);(3)当点与点关于轴对称时,的面积达到最大,理由见解析.【解析】(1)设,可得出,,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)分析可知直线的斜率存在,设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得,结合韦达定理可求得的值,即可得出直线的方程;(3)设与直线平行且与椭圆相切的直线的方程为,将该直线方程与椭圆的方程联立,由判别式为零可求得,分析可知当点为直线与椭圆的切点时,的面积达到最大,求出直线与椭圆的切点坐标,可得出结论.【小问1详解】解:因为,设,则,,所以,椭圆的方程可表示为,将点的坐标代入椭圆的方程可得,解得,因此,椭圆的方程为.【小问2详解】解:设线段的中点为,因为,则轴,故直线、的倾斜角互补,易知点,若直线轴,则、为椭圆短轴的两个顶点,不妨设点、,则,,,不合乎题意.所以,直线的斜率存在,设直线的方程为,设点、,联立,可得,,由韦达定理可得,,,,则,所以,解得,因此,直线的方程为.【小问3详解】解:设与直线平行且与椭圆相切的直线的方程为,联立,可得(*),,解得,由题意可知,当点为直线与椭圆的切点时,此时的面积取最大值,当时,方程(*)为,解得,此时,即点.此时,点与点关于轴对称,因此,当点与点关于轴对称时,的面积达到最大.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值20、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则所以,整理得,解得(舍去),或,所以21、(1)(2)【解析】(1)通过基本量列方程组可得;(2)由裂项相消法可解【小问1详解】由题意得解得,所以数列的通项公式为【小问2详解】由(1)知,则所以22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼小衔接语文拼音识字教学方案
- 临床路径优化与执行方案
- 政务服务窗口优化提升方案
- 网络信息安全工作总结报告
- 招商经理封闭式培训课件
- 押运行业安全培训计划课件
- 施工工地噪音治理技术方案
- 水泥厂拆除工程施工组织方案
- 代谢组学指导肿瘤多模态治疗
- 人文关怀视角下智慧健康教育系统创新
- 2024年-Juniper防火墙配置
- 线虫病疫木及异常枯死松树处置 投标方案案(技术方案)
- 季度安全工作汇报
- (高清版)DZT 0350-2020 矿产资源规划图示图例
- HGT4134-2022 工业聚乙二醇PEG
- 小学教职工代表大会提案表
- 广西中医药大学赛恩斯新医药学院体育补考申请表
- 公司委托法人收款到个人账户范本
- 2023年上海市春考数学试卷(含答案)
- 2023版押品考试题库必考点含答案
- 北京市西城区2020-2021学年八年级上学期期末考试英语试题
评论
0/150
提交评论