版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省南京市六合区程桥高级中学数学高二上期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.2.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C. D.3.设等比数列的前项和为,若,则的值是()A. B.C. D.44.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.5.设为直线上任意一点,过总能作圆的切线,则的最大值为()A. B.1C. D.6.设双曲线的虚轴长为,焦距为,则双曲线的渐近线方程为()A. B.C. D.7.函数的图象的大致形状是()A. B.C. D.8.在等差数列中,已知,,则使数列的前n项和成立时n的最小值为()A.6 B.7C.9 D.109.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,10.已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点()A. B.C. D.11.等差数列中,,,则当取最大值时,的值为A.6 B.7C.6或7 D.不存在12.若函数既有极大值又有极小值,则实数a的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________14.在不等边△ABC(三边均不相等)中,三个内角A,B,C所对的边分别为a,b,c,且有,则角C的大小为________15.已知数列{an}满足an+2=an+1-an(n∈N*),且a1=2,a2=3,则a2022的值为_________.16.已知直线与圆相切,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.18.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积19.(12分)已知数列的前n项和为,且.(1)求数列的通项公式;(2)令,求数列的前n项和.20.(12分)已知椭圆的长轴长是,以其短轴为直径的圆过椭圆的左右焦点,.(1)求椭圆E的方程;(2)过椭圆E左焦点作不与坐标轴垂直的直线,交椭圆于M,N两点,线段MN的垂直平分线与y轴负半轴交于点Q,若点Q的纵坐标的最大值是,求面积的取值范围.21.(12分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;22.(10分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.2、C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.3、B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比数列,,,.故选:B.4、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.5、D【解析】根据题意,判断点与圆的位置关系以及直线与圆的位置关系,根据直线与圆的位置关系,即可求得的最大值.【详解】因为过过总能作圆的切线,故点在圆外或圆上,也即直线与圆相离或相切,则,即,解得,故的最大值为.故选:D.6、B【解析】求出、的值,即可得出双曲线的渐近线方程.【详解】由已知可得,,则,因此,该双曲线的渐近线方程为.故选:B.7、B【解析】对A,根据当时,的值即可判断;对B,根据函数在上的单调性即可判断;对C,根据函数的奇偶性即可判断;对D,根据函数在上的单调性即可判断.【详解】解:对A,当时,,故A错误;对B,的定义域为,且,故为奇函数;,当时,当时,,即,又,,故存在,故在单调递增,单调递减,单调递增,故B正确;对C,为奇函数,故C错误;对D,函数在上不单调,故D错误.故选:B.8、D【解析】根据等差数列的性质及等差中项结合前项和公式求得,,从而得出结论.【详解】,,,,,,,使数列的前n项和成立时n的最小值为10,故选:D.9、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.10、D【解析】根据圆的切线性质,结合圆的标准方程、圆与圆的位置关系进行求解即可.【详解】因为、是圆的两条切线,所以,因此点、在以为直径的圆上,因为点是直线:上的动点,所以设,点,因此的中点的横坐标为:,纵坐标为:,,因此以为直径的圆的标准方程为:,而圆:,得:,即为直线的方程,由,所以直线经过定点,故选:D【点睛】关键点睛:由圆的切线性质得到点、在以为直径的圆上,运用圆与圆的位置关系进行求解是解题的关键.11、C【解析】设等差数列的公差为∵∴∴∴∵∴当取最大值时,的值为或故选C12、B【解析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为既有极大值又有极小值,且,所以有两个不等的正实数解,所以,且,解得,且.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、56【解析】根据系统抽样的定义得到编号之间的关系,即可得到结论.【详解】由已知样本中的前两个编号分别为02,08,则样本数据间距为,则样本容量为,则对应的号码数,则当时,x取得最大值为56故答案为:5614、【解析】由正弦定理可得,又,,,,,在三角形中,.考点:1正弦定理;2正弦的二倍角公式.15、【解析】根据递推关系求出数列的前几项,得周期性,然后可得结论【详解】由题意,,,,,,所以数列是周期数列,周期为6,所以故答案为:16、【解析】由直线与圆相切,结合点到直线的距离公式求解即可.【详解】由直线与圆相切,所以圆心到直线l的距离等于半径r,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)4【解析】(1)根据题意得,解方程得,进而得通项公式;(2)由题知,进而解不等式得或,再根据即可得答案.【小问1详解】设等差数列的公差为,由得=0,由题意知,,解得,所以d=2所以.小问2详解】解:由(1)可得,由可得,即,解得或,因为,所以,正整数的最小值为.18、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积19、(1)(2)【解析】(1)根据与的关系,分和两种情况,求出,再判断是否合并;(2)利用错位相减法求出数列的前n项和.【小问1详解】,当时,,当时,,也满足上式,数列的通项公式为:.【小问2详解】由(1)可得,①②①②得,20、(1);(2).【解析】(1)根据给定条件结合列式计算即可作答.(2)设出直线MN的方程,与椭圆方程联立并结合已知求出m的范围,再借助韦达定理求出面积函数,利用函数单调性计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为.【小问2详解】由(1)知,椭圆E左焦点为,设过椭圆E左焦点的直线为(存在且不为0),由消去x得,,设,则,线段的中点为,因此线段的垂直平分线为,由得的纵坐标为,依题意,且,解得,由(1)知,,,令,在上单调递减,当,即时,,当,即时,,所以面积的取值范围.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积21、(1)(2)【解析】(1)利用等差数列的性质可得,联立方程可得,代入等差数列的通项公式可求;(2)代入等差数列的前和公式可求,进一步可得,然后结合等差数列的定义可得,从而可求.【详解】(1)为等差数列,,又是方程的两个根,(2)由(1)可知,为等差数列,舍去)当时,为等差数列,满足要求【点睛】本题主要考查了等差数列的定义、性质、通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 富士康安全培训专员面试课件
- 2026年保险合同变更
- 2026年云数据库服务使用合同
- 2026年旅游平台导游兼职合同协议
- 2026年铁路货运代理合同范本标准版
- 2026年企业所得税汇算清缴代理合同
- 2026年航空责任保险合同
- 个人之间借款合同协议2026年定制版
- 2026年婚前投资收益共享合同协议
- 《信息技术基础(上册)》课件 模块四课题二
- 2026年1月1日起施行的《兵役登记工作规定》学习与解读
- 2025榆林市旅游投资集团有限公司招聘(15人)参考笔试题库及答案解析
- 2025福建三明市总工会三明市工人文化宫招聘工作人1人参考题库带答案解析
- 【人卫课件耳鼻喉9版】鼻科学第一章 鼻的应用解剖学及生理学
- 抵押车过户协议书
- 葡萄种植课件
- 浅析我国政府雇员制的利弊及发展对策研究
- 2025年全国高校辅导员国赛大赛基础知识测试题(附答案)(三套)
- 粉丝群体特征分析-洞察与解读
- 2025年亚氨基二乙酸行业分析报告及未来发展趋势预测
- 2025年江苏省普通高中高二上学期学业水平合格性考试调研历史试题(解析版)
评论
0/150
提交评论