版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江门中学2026届高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关2.若直线与双曲线相交,则的取值范围是A. B.C. D.3.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.44.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.45.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.6.等比数列的各项均为正数,且,则A. B.C. D.7.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项8.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.圆 B.双曲线C.抛物线 D.椭圆9.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=110.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.11.过点与直线平行的直线的方程是()A. B.C. D.12.已知,,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x()为二次函数的关系(如图),则每辆客车营运年数为________时,营运的年平均利润最大14.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.15.已知椭圆交轴于A,两点,点是椭圆上异于A,的任意一点,直线,分别交轴于点,,则为定值.现将双曲线与椭圆类比得到一个真命题:若双曲线交轴于A,两点,点是双曲线上异于A,的任意一点,直线,分别交轴于点,,则为定值___16.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数18.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力19.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.20.(12分)已知直线与抛物线交于两点(1)若,直线过抛物线的焦点,线段中点的纵坐标为2,求的长;(2)若交于,求的值21.(12分)三棱锥各棱长为2,E为AC边上中点(1)证明:面BDE;(2)求二面角的正弦值22.(10分)如图,在直三棱柱中,,分别是棱的中点,点在线段上.(1)当直线与平面所成角最大时,求线段的长度;(2)是否存在这样的点,使平面与平面所成的二面角的余弦值为,若存在,试确定点的位置,若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.2、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.3、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B4、A【解析】由直线与圆相切可得,再利用基本不等式即求.【详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A5、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.6、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.7、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C8、D【解析】根据题意知,所以,故点P的轨迹是椭圆.【详解】由题意知,关于CD对称,所以,故,可知点P的轨迹是椭圆.【点睛】本题主要考查了椭圆的定义,属于中档题.9、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题10、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.11、A【解析】根据题意利用点斜式写出直线方程即可.【详解】解:过点的直线与直线平行,,即.故选:A.12、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】首先根据题意得到二次函数的解析式为,再利用基本不等式求解的最大值即可.【详解】根据题意得到:抛物线的顶点为,过点,开口向下,设二次函数的解析式为,所以,解得,即,则营运的年平均利润,当且仅当,即时取等号故答案为:5.14、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:15、-【解析】由双曲线的方程可得,的坐标,设的坐标,代入双曲线的方程可得的横纵坐标的关系,求出直线,的方程,令,分别求出,的纵坐标,求出的表达式,整理可得为定值【详解】由双曲线的方程可得,,设,则,可得,直线的方程为:,令,则,可得,直线的方程为,令,可得,即,∴,,,故答案为:-另解:双曲线方程化为,只是将的替换为-,故答案也是只需将中的替换为-即可.故答案为:-.16、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时,当时,,为增函数;当时。,为减函数,所以在处取得极大值,也是最大值,最大值为,因为对任意正实数,恒成立,所以,得.【小问2详解】,,由,得,由,得或,所以在上为增函数,在上为减函数,在上为增函数,所以在时取得极大值为,在时取得极小值为,因为当大于0趋近于0时,趋近于负无穷,当趋近于正无穷时,趋近于正无穷,所以当,即时,有且只有一个零点;当,即时,有且只有两个零点;当,即时,有且只有三个零点;当,即时,有且只有两个零点;当,即时,有且只有一个零点.综上所述:当或时,有且只有一个零点;当或时,有且只有两个零点;当时有且只有三个零点.18、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.19、(1)的单调递增区间为,,单调递减区间为,(2)【解析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当f(1)≤1f(-1)≤1即在上恒成立所以,因此满足条件的的取值范围是20、(1)6(2)2【解析】(1)通过作辅助线,利用抛物线定义,结合梯形的中位线定理,可求得答案;(2)根据题意可求得直线AB的方程为y=x+4,联立抛物线方程,得到根与系数的关系,由OA⊥OB,得,根据数量积的计算即可得答案.【小问1详解】取AB的中点为E,当p=2时,抛物线为C:x2=4y,焦点F坐标为F(0,1),过A,E,B分别作准线y=-1的垂线,重足分别为I,H,G,在梯形ABGI中(图1),E是AB中点,则2EH=AI+BG,EH=2-(-1)=3,因为AB=AF+BF=AI+BG,所以AB=2EH=6.【小问2详解】设,由OD⊥AB交AB于D(-2,2),(图2),得kOD=-1,kAB=1,则直线AB的方程为y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.21、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理即可证明;(2)建立如图所示坐标系,则,易知平面BCD的法向量,利用空间向量法求出面BDE的法向量,结合向量的数量积计算即可得出结果.【小问1详解】正四面体中各面分别是正三角形,E为AC边上中点,,又平面,且,所以面BDE【小问2详解】建立如图所示坐标系,于是,,,,,易知平面BCD的法向量设面BDE的法向量,于是,令,则,,所以,所以,得所以二面角的正弦值为.22、(1)(2)存在,A1P=【解析】(1)作出线面角,因为对边为定值,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房产预订买卖合同范本
- 安徽省就业协议协议书
- 小型矿场托管合同范本
- 安全生产经营合同范本
- 执行委托代理合同范本
- 巴塞尔协议包含的合同
- 建房承包安全合同范本
- 工程泥工班组合同范本
- 工地围挡出租合同范本
- 螃蟹运瓜大班教案
- 低空智能-从感知推理迈向群体具身
- 2026届八省联考(T8联考)2026届高三年级12月检测训练生物试卷(含答案详解)
- 血液管理系统培训课件
- 四川省2025年高职单招职业技能综合测试(中职类)电子信息类试卷
- 2026贵州安创数智科技有限公司社会公开招聘119人笔试考试参考试题及答案解析
- 2025中原农业保险股份有限公司招聘67人参考笔试试题及答案解析
- 公安刑事案件办理课件
- 幼儿园重大事项社会稳定风险评估制度(含实操模板)
- 浅谈现代步行街的改造
- 2026年包头轻工职业技术学院单招职业适应性测试题库附答案
- 2025至2030中国应急行业市场深度分析及发展趋势与行业项目调研及市场前景预测评估报告
评论
0/150
提交评论