河北邯郸2026届高一上数学期末质量跟踪监视试题含解析_第1页
河北邯郸2026届高一上数学期末质量跟踪监视试题含解析_第2页
河北邯郸2026届高一上数学期末质量跟踪监视试题含解析_第3页
河北邯郸2026届高一上数学期末质量跟踪监视试题含解析_第4页
河北邯郸2026届高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北邯郸2026届高一上数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数图象向左平移个单位后与的图象重合,则()A. B.C D.2.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.3.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则4.下列函数是偶函数,且在上单调递减的是A. B.C. D.5.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.6.集合A=,B=,则集合AB=()A. B.C. D.7.函数的值域为()A. B.C. D.8.若,,则下列结论正确的是()A. B.C. D.9.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.10.若函数,在区间上单调递增,在区间上单调递减,则()A.1 B.C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数有两个零点,则___________12.写出一个同时具有下列性质①②③的函数_________①在R上单调递增;②;③13.已知甲、乙两组数据已整理成如图所示的茎叶图,则甲组数据的中位数是___________,乙组数据的25%分位数是___________14.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.15.已知奇函数f(x),当x>0,fx=x216.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若存在,使得成立,则求的取值范围;(2)将函数的图象上每个点纵坐标不变,横坐标缩短到原来的,得到函数的图象,求函数在区间内的所有零点之和18.某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为am的篱笆墙围成一个鸡圈,篱笆的两个端点A,B分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形;方案乙:如图2,围成区域为矩形;方案丙:如图3,围成区域为梯形,且.(1)在方案乙、丙中,设,分别用x表示围成区域的面积,;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.19.已知二次函数f(x)满足:f(0)=f(4)=4,且该函数的最小值为1(1)求此二次函数f(x)的解析式;(2)若函数f(x)的定义域为A=m,n(其中0<m<n),问是否存在这样的两个实数m,n,使得函数f(x)的值域也为A?若存在,求出m,n(3)若对于任意x1∈0,3,总存在x2∈1,220.整治人居环境,打造美丽乡村,某村准备将一块由一个半圆和长方形组成的空地进行美化,如图,长方形的边为半圆的直径,O为半圆的圆心,,现要将此空地规划出一个等腰三角形区域(底边)种植观赏树木,其余的区域种植花卉.设.(1)当时,求的长;(2)求三角形区域面积的最大值.21.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用三角函数的图象变换可求得函数的解析式.【详解】由已知可得.故选:C.2、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D3、D【解析】,,故选D.考点:点线面的位置关系.4、D【解析】函数为奇函数,在上单调递减;函数为偶函数,在上单调递增;函数为非奇非偶函数,在上单调递减;函数为偶函数,在上单调递减故选D5、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.6、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.7、D【解析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域.【详解】当时,单调递减,此时函数的值域为;当时,在上单调递增,在上单调递减,此时函数的最大值为,最小值为,此时值域为,综上可得,函数值域为.故选:D.8、C【解析】根据不等式的性质,逐一分析选项,即可得答案.【详解】对于A:因为,所以,因为,所以,故A错误;对于B:因为,所以,且,所以,故B错误;对于C:因为,所以,又,所以,故C正确;对于D:因为,,所以,所以,故D错误.故选:C9、C【解析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围10、B【解析】根据以及周期性求得.【详解】依题意函数,在区间上单调递增,在区间上单调递减,则,即,解得.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:212、(答案不唯一,形如均可)【解析】由指数函数的性质以及运算得出.【详解】对函数,因在R上单调递增,所以在R上单调递增;,.故答案为:(答案不唯一,形如均可)13、①.45②.35【解析】利用中位数的概念及百分位数的概念即得.【详解】由题可知甲组数据共9个数,所以甲组数据的中位数是45,由茎叶图可知乙组数据共9个数,又,所以乙组数据的25%分位数是35.故答案为:45;35.14、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意15、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-1016、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由三角函数公式化简可得f(x)=sin(2x),由存在,使得成立,只需fmax(x)≥a即可;(2)由函数图象变换可得,即求g(x)0的零点,由三角函数的对称性可得【详解】(1).若存在,使得成立,则只需即可∵,∴,∴当,即时,有最大值1,故.(2)依题意可得,由得,由图可知,在上有4个零点:,根据对称性有,从而所有零点和为.【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象和性质,涉及和差角的三角函数公式,考查了数形结合思想,属中档题18、(1),;,.(2)农户应该选择方案三,理由见解析.【解析】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为,再根据二次函数的性质结合(1)研究,的最大值即可得答案.【小问1详解】解:对于方案乙,当时,,所以矩形的面积,;对于方案丙,当时,,由于所以,所以梯形面积为,.【小问2详解】解:对于方案甲,设,则,所以三角形的面积为,当且仅当时等号成立,故方案甲的鸡圈面积最大值为.对于方案乙,由(1)得,,当且仅当时取得最大值.故方案乙的鸡圈面积最大值为;对于方案丙,,.当且仅当时取得最大值.故方案丙的鸡圈面积最大值为;由于所以农户应该选择方案丙,此时鸡圈面积最大.19、(1)f(x)=34x2-3x+4(2)存在满足条件的m,n,其中【解析】1设f(x)=a(x-2)2+1,由f(0)=4,求出a2分m<n≤2时,当m<2<n时,当2≤m<n时,三种情况讨论,可得满足条件的m,n,其中m=1,n=4;3若对于任意的x1∈0,3,总存在x解析:(1)依题意,可设f(x)=a(x-2)2+1,因f(0)=4,代入得(2)假设存在这样的m,n,分类讨论如下:当m<n≤2时,依题意,f(m)=n,f(n)=m,即3m+n=83,代入进一步得当m<2<n时,依题意m=f(2)=1,若n>3,f(n)=n,解得n=4或43若2<n≤3,n=f(1)=7当2≤m<n时,依题意,f(m)=m,f(n)=n,即34m2-3m+4=m,综上:存在满足条件的m,n,其中m=1,n=4.(3)依题意:2x由(1)可知,f(x1即2x2+整理得a>-2x22又y=-2x2+5x=-2(x-54)依题意:a>2点睛:本题重点考查了二次函数性质,运用待定系数法求得二次函数的解析式,在求二次函数的值域时注意分类讨论,解出符合条件的结果,当遇到“任意的x1,总存在x220、(1)(2)【解析】(1)利用三角函数表达出的长;(2)用的三角函数表达出三角形区域面积,利用换元法转化为二次函数,求出三角形区域面积的最大值.【小问1详解】设MN与AB相交于点E,则,则,故的长为【小问2详解】过点P作PF⊥MN于点F,则PF=AE=,而MN=ME+EN=,则三角形区域面积为,设,因为,所以,故,而,则,故当时,取得最大值,故三角形区域面积的最大值为21、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论