版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省黄山市屯溪一中数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是空间两条不重合的直线,是两个不重合的平面,则下列命题中正确的是A.,,B,,C.,,D.,,2.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件3.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.4.设函数,,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数5.设命题p:∀x∈0,1,x>xA.∀x∈0,1,x<x3C.∀x∈0,1,x≤x36.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}7.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.8.设函数对任意的,都有,,且当时,,则()A. B.C. D.9.半径为2,圆心角为的扇形的面积为()A. B.C. D.210.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若与的夹角是锐角,则的取值范围为______12.已知A、B均为集合的子集,且,,则集合________13.函数f(x)=log2(x2-5),则f(3)=______14.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.15.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是_______16.若函数的定义域为R,则实数m的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断并证明的奇偶性;(2)求函数在区间上的最小值和最大值.18.已知函数,)函数关于对称.(1)求的解析式;(2)用五点法在下列直角坐标系中画出在上的图象;(3)写出的单调增区间及最小值,并写出取最小值时自变量的取值集合19.已知集合A={x|2-a⩽x⩽2+a},B={x|(1)当a=3时,求A∩B,A∪∁(2)若A∩B=∅,求实数a的取值范围20.(1)已知,,求的值.(2)证明:.21.在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的a存在,求a的值;若a不存在,请说明理由.已知集合________,.若“”是“”的充分不必要条件,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】A不正确,也有可能;B不正确,也有可能;C不正确,可能或或;D正确,,,,考点:1线面位置关系;2线面垂直2、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.3、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题4、D【解析】通过诱导公式,结合正弦函数的性质即可得结果.【详解】,所以,,所以则是最小正周期为的奇函数,故选:D.5、D【解析】直接根据全称命题的否定,即可得到结论.【详解】因为命题p:∀x∈0,1,x所以¬p:∃x∈0,1,x故选:D6、A【解析】直接根据交集的定义即可得解.【详解】解:因为A={x|-2<x<1},B={x|x<-1或x>3},所以.故选:A.7、C【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.8、A【解析】由和可得函数的周期,再利用周期可得答案.【详解】由得,所以,即,所以的周期为4,,由得,所以故选:A.9、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D10、C【解析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用坐标表示出和,根据夹角为锐角可得且与不共线,从而构造出不等式解得结果.【详解】由题意得:,解得:又与不共线,解得:本题正确结果:【点睛】本题考查根据向量夹角求解参数范围问题,易错点是忽略两向量共线的情况.12、【解析】根据集合的交集与补集运算,即可求得集合A中的元素.再判定其他元素是否符合要求.【详解】A、B均为集合的子集若,则若,则假设,因为,则.所以,则必含有1,不合题意,所以同理可判断综上可知,故答案为:【点睛】本题考查了元素与集合的关系,集合与集合的交集与补集运算,对于元素的分析方法,属于基础题.13、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题14、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.15、【解析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【详解】因为函数为“倍缩函数”,即满足存在,使在上的值域是,由复合函数单调性可知函数在上是增函数所以,则,即所以方程有两个不等实根,且两根都大于0.令,则,所以方程变为:.则,解得所以实数的取值范围是.故答案为:16、【解析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数,证明见解析;(2)最小值为,最大值为.【解析】(1)利用函数奇偶性的定义证明即可;(2)设,可知函数为增函数,由,可得出,且有,将问题转化为二次函数在上的最值问题,利用二次函数的基本性质求解即可.【详解】(1)函数定义域为,关于原点对称,,因此,函数为奇函数;(2)设,由于函数为增函数,函数为减函数,所以,函数为增函数,当时,则,且,则,令,.所以,,.【点睛】本题考查函数奇偶性的证明,同时也考查了指数型函数在区间上最值的求解,利用换元法转化为二次函数的最值问题是解题的关键,考查化归与转化思想的应用,属于中等题.18、(1),(2)详见解析(3)单调递增区间是,,最小值为,取得最小值的的集合.【解析】(1)根据函数的对称轴,列式,求;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解.【小问1详解】因为函数关于直线对称,所以,,因为,所以,所以【小问2详解】首先根据“五点法”,列表如下:【小问3详解】令,解得:,,所以函数的单调递增区间是,,最小值为令,得,函数取得最小值的的集合.19、(1)A∩B={x|-1⩽x⩽1或4⩽x⩽5};A∪∁RB【解析】(1)a=3时求出集合A,B,再根据集合的运算性质计算A∩B和A∪∁(2)根据A∩B=∅,讨论A=∅和A≠∅时a的取值范围,从而得出实数a的取值范围【详解】解:(1)当a=3时,A={x|2-a⩽x⩽2+a}={x|-1⩽x⩽5},B={x|x2-5x+4⩾0}={x|x⩽1A∩B={x|-1⩽x⩽1或4⩽x⩽5};又∁RA∪∁(2)A∩B=∅,当2-a>2+a,即a<0时,A=∅,满足题意;当a⩾0时,应满足2-a>12+a<4,此时得0⩽a<1综上,实数a的取值范围是(-∞,1)【点睛】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题20、(1);(2)证明见解析.【解析】(1)对已知式子分别平方相加即可求得.(2)分别求解左边和右边,即可证明.【详解】(1)由,,分别平方得:,。两式相加可得:,整理化简得:.(2)证明:左边.右边,所以左边=右边,即原不等式成立.21、见解析【解析】首先解一元二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园的股份协议合同
- 大米采购违约合同范本
- 房子完工质保合同范本
- 安徽场地租赁合同范本
- 开挖清理劳务合同范本
- 承包矿山车队合同范本
- 房屋欠税拍卖合同范本
- 意外保险劳动合同范本
- 少儿美术学员合同范本
- 承包芦苇收割合同范本
- 腾讯新员工入职培训
- 语文试卷【黑吉辽蒙卷】高一辽宁省部分学校金太阳2025-2026学年高一上学期11月联考(26-108A)(11.24-11.25)
- 2025年政治会考重庆试卷及答案
- 垃圾分类工作面试技巧与问题
- 2025年北京市海淀区中小学教师招聘笔试参考试题及答案解析
- 全科接诊流程训练
- 2026年新《煤矿安全规程》培训考试题库(附答案)
- 鱼塘测量施工方案
- 幼儿园手指律动培训大纲
- 2023年萍乡辅警招聘考试真题及答案详解参考
- 浙江省嵊州市2025-2026学年高二上数学期末质量检测试题含解析
评论
0/150
提交评论