版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省长郡中学、衡阳八中等十三校重点中学数学高一上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线与圆相切,则的值为()A. B.C. D.2.设a,bR,,则()A. B.C. D.3.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.4.设全集,集合,,则=()A. B.C. D.5.命题“”的否定是()A. B.C. D.6.已知全集,集合则下图中阴影部分所表示的集合为()A. B.C. D.7.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)8.已知函数,则函数的零点个数是A.1 B.2C.3 D.49.设集合,则=A. B.C. D.10.已知函数是定义在上的偶函数,当时,,则的值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则的值等于_____12.如图,扇形的面积是,它的周长是,则弦的长为___________.13.已知函数的定义域为R,,且函数为偶函数,则的值为________,函数是________函数(从“奇”、“偶”、“非奇非偶”、“既奇又偶”中选填一个).14.已知点为角终边上一点,则______.15.当时,函数取得最大值,则_______________16.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某口罩生产厂家目前月生产口罩总数为100万,因新冠疫情的需求,拟按照每月增长率为扩大生产规模,试解答下面的问题:(1)写出第月该厂家生产的口罩数(万只)与月数(个)的函数关系式;(2)计算第10个月该厂家月生产的口罩数(精确到0.1万);(3)计算第几月该厂家月生产的口罩数超过120万只(精确到1月)【参考数据】:18.计算:(1).(2)19.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.20.已知函数,若,且,.(1)求与的值;(2)当时,函数的图象与的图象仅有一个交点,求正实数的取值范围.21.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D2、D【解析】利用不等式的基本性质及作差法,对结论逐一分析,选出正确结论即可.【详解】因为,则,所以,即,故A错误;因为,所以,则,所以,即,∴,,即,故B错误;∵由,因,所以,又因为,所以,即,故C错误;由可得,,故D正确.故选:D.3、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B4、B【解析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【详解】由题意知,所以.故选:B5、D【解析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D6、C【解析】根据题意,结合Venn图与集合间的基本运算,即可求解.【详解】根据题意,易知图中阴影部分所表示.故选:C.7、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.8、A【解析】设,则函数等价为,由,转化为,利用数形结合或者分段函数进行求解,即可得到答案【详解】由题意,如图所示,设,则函数等价为,由,得,若,则,即,不满足条件若,则,则,满足条件,当时,令,解得(舍去);当时,令,解得,即是函数的零点,所以函数的零点个数只有1个,故选A【点睛】本题主要考查了函数零点问题的应用,其中解答中利用换元法结合分段函数的表达式以及数形结合是解决本题的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.9、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化10、B【解析】根据偶函数性质的,再代入对应解析式得结果.【详解】因为函数是定义在上的偶函数,所以,选B.【点睛】本题考查偶函数应用,考查基本转化求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.12、【解析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解.【详解】设扇形的圆心角为,半径为,则由题意,解得,则由垂径定理可得.故答案为:.13、①.7②.奇【解析】利用函数的奇偶性以及奇偶性定义即可求解.【详解】函数为偶函数,由,则,所以,所以,,定义域为,定义域关于原点对称.因为,所以,所以函数为奇函数.故答案为:7;奇14、5【解析】首先求,再化简,求值.【详解】由题意可知.故答案为:5【点睛】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.15、【解析】利用三角恒等变换化简函数,根据正弦型函数的最值解得,利用诱导公式求解即可.【详解】解析:当时,取得最大值(其中),∴,即,∴故答案为:-3.16、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)112.7万只;(3)16个月.【解析】(1)每月增长率为指数式,依据实际条件列出解析式即可;(2)第10个月为时,带入计算可得结果;(3)根据参考数据带入数值计算.【详解】解:(1)因为每月增长率为,所以第月该厂家生产的口罩数,.(2)第10个月该厂家月生产的口罩数万只.(3)是增函数,当时,,当时,,所以当时,即第16个月该厂家月生产的口罩数超过120万只.18、(1)20(2)-2【解析】根据指数运算公式以及对数运算公式即可求解。【详解】(1)=(2)=【点睛】本题考查指数与对数的运算,以及计算能力,(1)根据指数幂的运算法则求解即可。(2)根据对数运算的性质求解即可,属于基础题。19、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知当时,;则,即令,,问题等价于两个函数与的图象在上有且只有一个交点;由,函数的图象开口向下,对称轴为,在上单调递减,在上单调递增,可图知;故【点睛】函数的零点个数与函数和的图象的交点个数相等,故可通过函数图象研究形如函数的零点问题.20、(1),.(2).【解析】(1)由,可得,结合,得,,则,;(2),,,分三种情况讨论,时,时,结合二次函数对称轴与单调性,以及对数函数的单调性,可筛选出符合题意的正实数的取值范围.试题解析:(1)设,则,因为,因为,得,,则,.(2)由题可知,,.当时,,在上单调递减,且,单调递增,且,此时两个图象仅有一个交点.当时,,在上单调递减,在上单调递增,因为两个图象仅有一个交点,结合图象可知,得.综上,正实数的取值范围是.21、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年股权代持协议书格式
- 康复机器人辅助下的关节活动度训练
- 度普利尤单抗治疗AD的个体化治疗策略
- 应急演练效果评估报告撰写
- 库欣综合征的ACTH依赖型病因诊断策略
- 年轻化策略与Z世代吸引力品牌-1
- 帕金森病患者步态稳定性的机器人干预研究
- 帕金森病基因编辑微创治疗的手术器械创新
- 医疗单位礼仪培训实施策略
- 妇产科护理培训课程
- 部编版(2024)小学语文三年级上册期末综合质量调研卷(含答案)
- 雨课堂在线学堂《项目管理概论》作业单元考核答案
- 诊所注销申请书
- 心脏瓣膜病麻醉管理
- TBT3208-2023铁路散装颗粒货物运输防冻剂
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- 汽车吊、随车吊起重吊装施工方案
- 中外政治思想史练习题及答案
- 降低阴式分娩产后出血发生率-PDCA
- GB/T 5211.6-2020颜料和体质颜料通用试验方法第6部分:水悬浮液pH值的测定
- GB/T 36024-2018金属材料薄板和薄带十字形试样双向拉伸试验方法
评论
0/150
提交评论