上海外国语大学附属外国语学校2026届高二上数学期末综合测试试题含解析_第1页
上海外国语大学附属外国语学校2026届高二上数学期末综合测试试题含解析_第2页
上海外国语大学附属外国语学校2026届高二上数学期末综合测试试题含解析_第3页
上海外国语大学附属外国语学校2026届高二上数学期末综合测试试题含解析_第4页
上海外国语大学附属外国语学校2026届高二上数学期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海外国语大学附属外国语学校2026届高二上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.2.若直线与直线垂直,则a的值为()A.2 B.1C. D.3.已知空间、、、四点共面,且其中任意三点均不共线,设为空间中任意一点,若,则()A.2 B.C.1 D.4.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-25.直线的一个法向量为()A. B.C. D.6.知点分别为圆上的动.点,为轴上一点,则的最小值()A. B.C. D.7.如图,在正方体中,点,分别是面对角线与的中点,若,,,则()A. B.C. D.8.以,为焦点,且经过点的椭圆的标准方程为()A. B.C. D.9.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离10.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.8111.直线的倾斜角为()A.0 B.C. D.12.在四面体OABC中,,,,则与AC所成角的大小为()A.30° B.60°C.120° D.150°二、填空题:本题共4小题,每小题5分,共20分。13.若函数在[1,3]单调递增,则a的取值范围___14.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________15.已知曲线,①若,则是椭圆,其焦点在轴上;②若,则是圆,其半径为;③若,则是双曲线,其渐近线方程为;④若,,则是两条直线.以上四个命题,其中正确的序号为_________.16.若和或都是假命题,则的范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.18.(12分)已知抛物线上的点到焦点的距离为6(1)求抛物线的方程;(2)设为抛物线的焦点,直线与抛物线交于,两点,求的面积19.(12分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆的标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:20.(12分)如图,正三棱柱中,D是的中点,.(1)求点C到平面的距离;(2)试判断与平面的位置关系,并证明你的结论.21.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.22.(10分)如图,在四棱锥中,平面,底面为正方形,且,点在棱上,且直线与平面所成角的正弦值为(1)求点的位置;(2)求点到平面的距离

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.2、A【解析】根据两条直线垂直的条件列方程,解方程求得的值.【详解】由于直线与直线垂直,所以,解得.故选:A3、B【解析】根据空间四点共面的充要条件代入即可解决.【详解】,即整理得由、、、四点共面,且其中任意三点均不共线,可得,解之得故选:B4、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.5、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.6、B【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为1,∴若与关于x轴对称,则,即,当三点不共线时,当三点共线时,所以同理(当且仅当时取得等号)所以当三点共线时,当三点不共线时,所以∴的最小值为圆与圆的圆心距减去两个圆的半径和,∴.故选:B.7、D【解析】由空间向量运算法则得,利用向量的线性运算求出结果.【详解】因为点,分别是面对角线与的中点,,,,所以故选:D.8、B【解析】根据焦点在x轴上,c=1,且过点,用排除法可得.也可待定系数法求解,或根据椭圆定义求2a可得.【详解】因为焦点在x轴上,所以C不正确;又因为c=1,故排除D;将代入得,故A错误,所以选B.故选:B9、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.10、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.11、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.12、B【解析】以为空间的一个基底,求出空间向量求的夹角即可判断作答.【详解】在四面体OABC中,不共面,则,令,依题意,,设与AC所成角的大小为,则,而,解得,所以与AC所成角的大小为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:14、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:15、①③④【解析】通过m,n的取值判断焦点坐标所在轴,判断①,求出圆的半径判断②;通过求解双曲线的渐近线方程,判断③;利用,,判断曲线是否是两条直线判断④【详解】解:①若,则,因为方程化为:,焦点坐标在y轴,所以①正确;②若,则C是圆,其半径为:,不一定是,所以②不正确;③若,则C是双曲线,其渐近线方程为,化简可得,所以③正确;④若,,方程化为,则C是两条直线,所以④正确;故答案为:①③④16、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.18、(1)(2)【解析】(1)根据焦半径公式可求,从而可求抛物线的方程.(2)求出的长度后可求的面积.【小问1详解】因为,所以,故抛物线方程为:.【小问2详解】设,且,由可得,故或,故,故,故,而到直线的距离为,故的面积为19、(1);(2)证明见解析【解析】(1)由可求出,结合离心率可知,进而可求出,即可求出标准方程.(2)由题意知,,则由直线的点斜式方程可得直线的解析式为,与椭圆进行联立,设,,结合韦达定理可得,从而由斜率的计算公式对进行整理化简从而可证明.【详解】(1)解:因为,所以.又因为离心率,所以,则,所以椭圆的标准方程是(2)证明:由题意知,,,则直线的解析式为,代入椭圆方程,得设,,则.又因为,,所以【点睛】关键点睛:本题第二问的关键是联立直线和椭圆的方程后,结合韦达定理,用表示交点横坐标的和与积,从而代入进行整理化简.20、(1)(2)平行,证明过程见解析.【解析】(1)利用等体积法即可求解;(2)利用线面平行判定即可求解.【小问1详解】解:正三棱柱中,D是的中点,所以,,正三棱柱中,所以又因为正三棱柱中,侧面平面且交线为且平面中,所以平面又平面所以设点C到平面的距离为在三棱锥中,即所以点C到平面的距离为.【小问2详解】与平面的位置,证明如下:连接交于点,连接,如下图所示,因为正三棱柱的侧面为矩形所以为的中点又因为为中点所以为的中位线所以又因为平面,且平面所以平面21、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由(1)得,当,3,6时为有理项,故有理有,,.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.22、(1)为棱中点(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,其中,利用空间向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论