2026届湖南省娄底市数学高一上期末达标检测模拟试题含解析_第1页
2026届湖南省娄底市数学高一上期末达标检测模拟试题含解析_第2页
2026届湖南省娄底市数学高一上期末达标检测模拟试题含解析_第3页
2026届湖南省娄底市数学高一上期末达标检测模拟试题含解析_第4页
2026届湖南省娄底市数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖南省娄底市数学高一上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-12.化简:()A B.C. D.3.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.24.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为()A.2 B.C.1 D.5.在下列区间中函数的零点所在的区间为()A. B.C. D.6.已知,则的值为()A. B.C. D.7.下列选项正确的是()A. B.C. D.8.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则9.已知、是方程两个根,且、,则的值是()A. B.C.或 D.或10.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个二、填空题:本大题共6小题,每小题5分,共30分。11.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________12.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm213.函数的图像恒过定点___________14.已知函数,则______.15.若扇形的面积为9,圆心角为2弧度,则该扇形的弧长为______16.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.18.已知函数(1)判断的奇偶性;(2)若当时,恒成立,求实数的取值范围19.已知角的终边经过点.(1)求的值;(2)求的值.20.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值21.已知函数,,当时,恒有(1)求的表达式及定义域;(2)若方程有解,求实数的取值范围;(3)若方程的解集为,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B2、D【解析】利用三角函数诱导公式、同角三角函数的基本关系化简求值即可.【详解】,故选:D3、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值4、C【解析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值【详解】由题意得方程有两个不等实根,当方程有两个非负根时,令时,则方程为,整理得,解得;当时,,解得,故不满足满足题意;当方程有一个正跟一个负根时,当时,,,解得,当时,方程为,,解得;当方程有两个负根时,令,则方程为,解得,当,,解得,不满足题意综上,t的取值为和,因此t的所有取值之和为1,故选C【点睛】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断5、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.6、B【解析】利用诱导公式由求解.【详解】因为,所以,故选:B7、A【解析】根据指数函数的性质一一判断可得;【详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A8、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质9、B【解析】先用根与系数的关系可得+=,=4,从而可得<0,<0,进而,所以,然后求的值,从而可求出的值.【详解】由题意得+=,=4,所以,又、,故,所以,又.所以.故选:B.10、A【解析】对于①:利用棱台的定义进行判断;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.即可判断;对于③:举反例:底面的菱形,各侧面都是正方形的四棱柱不是正方体.即可判断;对于④:利用圆锥的性质直接判断.【详解】对于①:棱台是棱锥过侧棱上一点作底面的平行平面分割而得到的.而两个面平行且相似,其余各面都是梯形的多面体中,把梯形的腰延长后,有可能不交于一点,就不是棱台.故①错误;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.故②错误;对于③:各侧面都是正方形的四棱柱中,如果底面的菱形,一定不是正方体.故③错误;对于④:圆锥的轴截面是等腰三角形.是正确的.故④正确.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果12、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.13、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.14、2【解析】根据自变量的范围,由内至外逐层求值可解.【详解】又故答案为:2.15、6【解析】先由已知求出半径,从而可求出弧长【详解】设扇形所在圆的半径为,因为扇形的面积为9,圆心角为2弧度,所以,得,所以该扇形的弧长为,故答案为:616、②【解析】对于①,,则,位置关系不确定,的位置关系不能确定;对于②,由垂直于同一平面的两直线平行知,结论正确;对于③,,则或;对于④,,则或,故答案为②.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)因为甲、乙、丙三位同学是否中奖是相互独立,因此可用相互独立事件同时发生的概率求三位同学都没有中奖的概率;(2)将此问题看成是三次独立重复试验,每试验“中奖”发生的概率为.试题解析:解:设甲、乙、丙三位同学中奖分别为事件A、B、C,那么事件A、B、C相互独立,且P(A)=P(B)=P(C)(1)三位同学都没有中奖的概率为:P(··)=P()P()P().(2)三位同学中至少有两位没有中奖的概率为:P=考点:1、相互独立事件同时发生的概率;2、独立重复试验.18、(1)偶函数(2)【解析】(1)利用奇函数与偶函数的定义判断即可;(2)要使恒成立转化,判断函数的单调性,利用单调性求出的取值范围,即可得到的范围【小问1详解】函数的定义域为,关于原点对称,又,所以函数为偶函数;【小问2详解】因为在上单调递增,故函数在上单调递减,所以,因为当时,恒成立转化为,即可,所以,则实数的取值范围为19、(1);(2).【解析】因为角终边经过点,设,,则,所以,,.(1)即得解;(2)化简即可得解.试题解析:因为角终边经过点,设,,则,所以,,.(1)(2)20、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.21、(1),;(2);(3)【解析】(1)由已知中函数,,当时,恒有,我们可以构造一个关于方程组,解方程组求出的值,进而得到的表达式;(2)转化为,解得,可求出满足条件的实数的取值范围.(3)根据对数的运算性质,转化为一个关于的分式方程组,进而根据方程的解集为,则方程组至少一个方程无解或两个方程的解集的交集为空集,分类讨论后,即可得到答案.【详解】(1)∵当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论