七年级下册数学期中考试题【答案】_第1页
七年级下册数学期中考试题【答案】_第2页
七年级下册数学期中考试题【答案】_第3页
七年级下册数学期中考试题【答案】_第4页
七年级下册数学期中考试题【答案】_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………外…………○…………装…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………七年级下册数学期中考试题【答案】一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,把正确答案序号填涂在答题纸相应的位置)1.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A. B. C. D.2.下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5 C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a23.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为()A.4个 B.3个 C.2个 D.1个4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3 C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm35.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()A.相等 B.互补 C.互余 D.不能确定6.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159° B.148° C.142° D.138°7.若|3x+2y﹣4|+27(5x+6y)2=0,则x,y的值分别是()A. B. C. D.8.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58° B.70° C.110° D.116°9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定10.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.411.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.412.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A. B. C. D.二、填空题(请直接将答案填写在横线上)13.已知∠AOB=80°,∠AOC=30°,则∠BOC=.14.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1=度.15.已知2x=3,2y=5,则22x+y﹣1=.16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为度.17.已知是二元一次方程组的解,则a﹣b的值为.18.若(3x2﹣2x+1)(x﹣b)的积中不含x的一次项,则b的值为.三.解答题(本题共7小题,解答题要写出必要的步骤)19.计算(1)(﹣4)2007x(0.25)2018(2)3(2﹣y)2﹣4(y+5)(3)(a+2b)(a﹣2b)﹣b(a﹣8b)(4)(a﹣b)(a2+ab+b2)20.解下列方程组:(1)(2).21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.22.已知,如图,直线AB,CD被直线EF所截,H为CD与EF的交点,GH⊥CD于点H,∠2=30°,∠1=60°.求证:AB∥CD.23.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,(一张铁皮只能生产一种产品)(1)向用多少张铁皮做盒身,多少张铁皮做盒底,可以正好用完190张铁皮并制成一批完整的盒子?(2)这批盒子一共有多少个?24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=20°,求∠FEC的度数.25.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?26.我们知道.求类似于值,我们可以采取这样的思路,注意到然后再相加,我们就可以解决的求和问题(1)求的结果:(2)我们如何求:的值呢;由上面问题的处理思路,我们考虑是不是能将写成和差的形式,为此我们不妨假设:再想法交形计算.①A、B、C的值;②的值.

参考答案与试题解析一.选择题(共12小题)1.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A. B. C. D.【分析】根据角的四种表示方法和具体要求回答即可.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.2.下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5 C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.3.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为()A.4个 B.3个 C.2个 D.1个【分析】根据余角和补角的概念、对顶角的性质、垂线段最短、平行公理判断即可.【解答】解:对顶角相等,①正确;过直线外一点有且只有一条直线与这条直线平行,②正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,③正确;一个角的补角比它的余角大90°,④错误.故选:B.4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3 C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239=1.239×10﹣3.故选:A.5.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()A.相等 B.互补 C.互余 D.不能确定【分析】由DE∥AB,得出∠B=∠EDC,由AD⊥BC,得出∠1+∠EDC=90°,即可得出∴∠B和∠1互余.【解答】解:∵DE∥AB,∴∠B=∠EDC,∵AD⊥BC,∴∠1+∠EDC=90°,∴∠B+∠1=90°,∴∠B和∠1互余.故选:C.6.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159° B.148° C.142° D.138°【分析】根据平行线的性质可得∠GEB=∠1=42°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=40°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=21°,∴∠2=180°﹣∠FEB=159°.故选:A.7.若|3x+2y﹣4|+27(5x+6y)2=0,则x,y的值分别是()A. B. C. D.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.【解答】解:∵|3x+2y﹣4|+27(5x+6y)2=0,∴,①×3﹣②得:4x=12,即x=3,把x=3代入①得:y=﹣,则方程组的解为,故选:B.8.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58° B.70° C.110° D.116°【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选:C.9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.10.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.【解答】解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.故选:C.11.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.12.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A. B. C. D.【分析】根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,”分别得出等式方程组成方程组,即可得出答案.【解答】解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.二.填空题(共6小题)13.已知∠AOB=80°,∠AOC=30°,则∠BOC=110°或50°.【分析】分两种情况进行讨论:①射线OC在∠AOB的外部;②射线OC在∠AOB的内部;从而算出∠AOC的度数.【解答】解:①射线OC在∠AOB的外部,如图1,∠AOC=∠AOB+∠BOC=80°+30°=110°;②射线OC在∠AOB的内部,如图2,∠AOC=∠AOB﹣∠BOC=80°﹣30°=50°.故答案为:110°或50°.14.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1=50度.【分析】本题主要利用平行线的性质进行做题.【解答】解:∵OP∥QR,∴∠2+∠PRQ=180°(两直线平行,同旁内角互补),∵QR∥ST,∴∠3=∠SRQ(两直线平行,内错角相等),∵∠SRQ=∠1+∠PRQ,即∠3=180°﹣∠2+∠1,∵∠2=110°,∠3=120°,∴∠1=50°,故填50.15.已知2x=3,2y=5,则22x+y﹣1=.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:22x+y﹣1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=,故答案为:.16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为25度.【分析】首先过点B作BE∥l,可得BE∥l∥m,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点B作BE∥l,∵l∥m,∴BE∥l∥m,∴∠1=∠α,∠2=∠β=20°,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠α=∠1=∠ABC﹣∠2=25°.故答案为:25.17.已知是二元一次方程组的解,则a﹣b的值为5.【分析】把方程组的解代入方程组,得出关于a、b的方程组,求出方程组的解,再代入求出即可.【解答】解:根据题意得,,①+②,得:4a=8,解得:a=2,②﹣①,得:2b=﹣6,解得:b=﹣3,∴a﹣b=2﹣(﹣3)=5,故答案为:5.18.若(3x2﹣2x+1)(x﹣b)的积中不含x的一次项,则b的值为﹣.【分析】先根据多项式乘以多项式法则展开,再合并同类项,根据已知得出2b+1=0,求出即可.【解答】解:(3x2﹣2x+1)(x﹣b)=3x3﹣3bx2﹣2x2+2bx+x﹣b=3x3﹣(3b+2)x2+(2b+1)x﹣b,∵积中不含x的一次项,∴2b+1=0,解得:b=﹣,故答案为:﹣.三.解答题(共8小题)19.计算(1)(﹣4)2007x(0.25)2018(2)3(2﹣y)2﹣4(y+5)(3)(a+2b)(a﹣2b)﹣b(a﹣8b)(4)(a﹣b)(a2+ab+b2)【分析】(1)利用积的乘方继续计算;(2)先去括号,再合并同类项;(3)先去括号,再合并同类项;(4)直接利用立方差公式计算.【解答】解:(1)原式=[(﹣4)×(﹣0.25)]2017×(﹣0.25)=﹣0.25;(2)原式=3(4﹣4y+y2)﹣4y﹣20=12﹣12y+3y2﹣4y﹣20=3y2﹣16y﹣8;(3)原式=a2﹣4b2﹣ab+4b2=a2﹣ab;(4)原式=a3﹣b3.20.解下列方程组:(1)(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①×2得:11y=﹣11,即y=﹣1,把y=﹣1代入①得:x=3,则方程组的解为;(2)方程组整理得:,①×2﹣②×3得:x=﹣18,把x=﹣18代入②得:y=﹣,则方程组的解为.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.【分析】根据OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,可以求得∠AOC、∠AOD的度数,从而可以求得∠COD的度数.【解答】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD==57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.已知,如图,直线AB,CD被直线EF所截,H为CD与EF的交点,GH⊥CD于点H,∠2=30°,∠1=60°.求证:AB∥CD.【分析】要证AB∥CD,只需证∠1=∠4,由已知条件结合垂线定义和对顶角性质,易得∠4=60°,故本题得证.【解答】证明:∵GH⊥CD,(已知)∴∠CHG=90°.(垂直定义)又∵∠2=30°,(已知)∴∠3=60°.∴∠4=60°.(对顶角相等)又∵∠1=60°,(已知)∴∠1=∠4.∴AB∥CD(同位角相等,两直线平行).23.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,(一张铁皮只能生产一种产品)(1)向用多少张铁皮做盒身,多少张铁皮做盒底,可以正好用完190张铁皮并制成一批完整的盒子?(2)这批盒子一共有多少个?【分析】(1)设用x张铁皮做盒身,用y张铁皮做盒底,由题意列出方程组,解方程组即可;(2)由题意“一个盒身与两个盒底配成一个完整的盒子”即可得出答案.【解答】解:(1)设用x张铁皮做盒身,用y张铁皮做盒底,根据题意,得:,解得:;答:用110张铁皮做盒身,80张铁皮做盒底,可以正好用完190张铁皮并制成一批完整的盒子;(2)110×8=880(个);答:这批盒子一共有880个.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=20°,求∠FEC的度数.【分析】根据平行于同一条直线的两直线平行可得EF∥BC,再根据平行线的性质可得∠ACB+∠DAC=180°,进而可得∠ACB的度数,然后求出∠FCB的度数,再根据角平分线的性质可得∠BCE=22°.再利用平行线的性质可得答案.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∵AD∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=116°,∴∠ACB=64°,∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=44°,∵CE平分∠BCF,∴∠BCE=22°.∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=22°.25.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第三次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【分析】(1)根据图表可得小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据图表列出方程组求出x和y的值;(3)设商店是打a折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1062元,列出方程求解即可.【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.26.我们知道.求类似于值,我们可以采取这样的思路,注意到然后再相加,我们就可以解决的求和问题(1)求的结果:(2)我们如何求:的值呢;由上面问题的处理思路,我们考虑是不是能将写成和差的形式,为此我们不妨假设:再想法交形计算.①A、B、C的值;②的值.【分析】(1)先根据得出的规律展开,再合并,最后求出即可;(2)①先得出的规律,即可求得A、B、C的值;①提取后将各项拆开即可相加即可求得结果;【解答】解:(1)=1﹣+﹣+﹣…+﹣=1﹣=;(2)①∵=•﹣+•=[(﹣)﹣(﹣)],∴A=,B=﹣1,C=;②原式=(1﹣+﹣+…+﹣)﹣(﹣+﹣+…+﹣)=×﹣×=.

七年级(下)数学期中考试题(答案)一、选择题(本大题共12个小题,每小题2分,共24分)1.9的算术平方根是()A.3 B. C.±3 D.±2.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个 B.3个 C.2个 D.1个3.点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个 B.2个 C.3个 D.4个4.下列语句中,假命题的是()A.对顶角相等 B.若直线a、b、c满足b∥a,c∥a,那么b∥c C.两直线平行,同旁内角互补 D.互补的角是邻补角5.如图,小手盖住的点的坐标可能是()A.(6,﹣4) B.(5,2) C.(﹣3,﹣6) D.(﹣3,4)6.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD7.下列等式正确的是()A. B. C. D.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)9.如图,已知直线AB,CD相交于点O,OE⊥AB,∠EOC=28°,则∠BOD的度数为()A.28° B.52° C.62° D.118°10.若|x|=3,y是4的算术平方根,且|y﹣x|=x﹣y,则x+y的值是()A.5 B.﹣5 C.1 D.﹣111.如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,a∥b B.当a∥b时,∠1=∠2 C.当a∥b时,∠1+∠2=90° D.当a∥b时,∠1+∠2=180°12.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是()A. B. C.4 D.3二.填空题(每小题3分,共24分)13.8的立方根是.14.如图,已知AB∥CD,∠A=70°,则∠1的度数是度.15.如图所示,若在某棋盘上建立直角坐标系,使““位于点(1,﹣2),“位于点(3,﹣2),则“”位于点.16.比较大小:﹣4(填“>”、“<”或“=”).17.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.18.如图,a∥b,∠1=110°,∠3=40°,则∠2=°.19.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.20.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,An,…若点A1的坐标为(3,1),则点A2019的坐标为.三、解答题(本大题共7个小题,共52分解答应写出文字说明,证明过程或演算步骤)21.计算:22.如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.23.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.24.已知x、y满足+|y﹣3x﹣1|=0,求y2﹣5x的平方根.25.完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB()∴∠1=()∴EC∥BF()∴∠B=∠AEC()又∵∠B=∠C(已知)∴∠AEC=()∴()∴∠A=∠D()26.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.27.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.

参考答案与试题解析一.选择题(共12小题)1.9的算术平方根是()A.3 B. C.±3 D.±【分析】首先根据算术平方根的定义它的算术平方根即可解决问题.【解答】解:∴9的算术平方根是3.故选:A.2.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个 B.3个 C.2个 D.1个【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.3.点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个 B.2个 C.3个 D.4个【分析】直接利用不属于任何象限即坐标轴上的位置,即可得出答案.【解答】解:点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有:(1,0),(0,﹣3),(0,0)共3个.故选:C.4.下列语句中,假命题的是()A.对顶角相等 B.若直线a、b、c满足b∥a,c∥a,那么b∥c C.两直线平行,同旁内角互补 D.互补的角是邻补角【分析】真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.一个命题都可以写成这样的格式:如果+条件,那么+结论.条件和结果相矛盾的命题是假命题.【解答】解:(D)两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.故互补的角,不一定是有一条公共边,它们的另一条边互为反向延长线,故D是假命题;故选:D.5.如图,小手盖住的点的坐标可能是()A.(6,﹣4) B.(5,2) C.(﹣3,﹣6) D.(﹣3,4)【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.6.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD【分析】A、B、C、根据同旁内角互补,判定两直线平行;D、∠A与∠C不能构成三线八角,因而无法判定两直线平行.【解答】解:A、C、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,故A错误,C正确;B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,故B错误;D、∠A与∠C不能构成三线八角,无法判定两直线平行,故D错误.故选:C.7.下列等式正确的是()A. B. C. D.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1﹣3=﹣2;纵坐标为﹣1+2=1,∴点B的坐标是(﹣2,1).故选:A.9.如图,已知直线AB,CD相交于点O,OE⊥AB,∠EOC=28°,则∠BOD的度数为()A.28° B.52° C.62° D.118°【分析】直接利用垂线的定义结合对顶角的定义分析得出答案.【解答】解:∵OE⊥AB,∠EOC=28°,∴∠AOC=∠BOD=90°+28°=118°.故选:D.10.若|x|=3,y是4的算术平方根,且|y﹣x|=x﹣y,则x+y的值是()A.5 B.﹣5 C.1 D.﹣1【分析】由|y﹣x|=x﹣y知x≥y,再根据|x|=3,y是4的算术平方根得出x、y的值,代入计算可得【解答】解:因为|y﹣x|≥0,所以x﹣y≥0,即x≥y.由|x|=3,y是4的算术平方根可知x=3、y=2.则x+y=5,故选:A.11.如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,a∥b B.当a∥b时,∠1=∠2 C.当a∥b时,∠1+∠2=90° D.当a∥b时,∠1+∠2=180°【分析】根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.【解答】解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a∥b时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D正确.故选:D.12.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是()A. B. C.4 D.3【分析】利用等面积法求得OP的最小值.【解答】解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴OA•OB=AB•OP.∴OP===.故选:B.二.填空题(共8小题)13.8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.14.如图,已知AB∥CD,∠A=70°,则∠1的度数是110度.【分析】首先根据平行线的性质,得∠A的内错角是70°,再根据邻补角的定义,得∠1的度数是180°﹣70°=110°.【解答】解:∵AB∥CD,∠A=70°,∴∠2=∠A=70°,∴∠1=180°﹣70°=110°.15.如图所示,若在某棋盘上建立直角坐标系,使““位于点(1,﹣2),“位于点(3,﹣2),则“”位于点(﹣2,1).【分析】先确定原点位置,据此建立坐标系,再根据题意得出答案.【解答】解:建立坐标系如下图所示:则“”位于点(﹣2,1),故答案为:(﹣2,1).16.比较大小:﹣4<(填“>”、“<”或“=”).【分析】先把﹣4化为﹣的形式,再根据负数比较大小的法则进行比较即可.【解答】解:∵﹣4=﹣,16>13,∴>,∴﹣<﹣,即﹣4<﹣.故答案为:<.17.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(﹣2,2)或(8,2).【分析】根据B点位置分类讨论求解.【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).18.如图,a∥b,∠1=110°,∠3=40°,则∠2=70°.【分析】根据平行线的性质求出∠2+∠4=140°,根据邻补角求出∠4,即可求出答案.【解答】解:∵a∥b,∴∠3+∠2+∠4=180°,∵∠3=40°,∴∠2+∠4=140°,∵∠1=110°,∴∠4=180°﹣110°=70°,∴∠2=140°﹣70°=70°,故答案为:70.19.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm.【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1cm得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=10+1+1=12cm.故答案为:12cm,20.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,An,…若点A1的坐标为(3,1),则点A2019的坐标为(﹣3,1).【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故答案为:(﹣3,1).三.解答题(共7小题)21.计算:【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及二次根式乘法法则计算即可求出值.【解答】解:原式=5﹣4+﹣1+3﹣1=2+.22.如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.【分析】根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:∵a∥b,∴∠2=∠3.∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣55°=35°,∴∠2=∠3=35°.23.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是平行且相等;(3)求△DEF的面积.【分析】(1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.【解答】解:(1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,故答案为:平行且相等;(3)S△DEF=3×3﹣×2×3﹣×1×2﹣×1×3=.24.已知x、y满足+|y﹣3x﹣1|=0,求y2﹣5x的平方根.【分析】根据绝对值的性质以及二次根式的性质即可求出答案.【解答】解:由题意可知:x+1=0,y﹣3x﹣1=0,∴x=﹣1,y=3x+1=﹣3+1=﹣2∴y2﹣5x=4+5=9∴9的平方根是±3即y2﹣5x的平方根是±325.完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换)∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠A=∠D(两直线平行,内错角相等)【分析】求出∠1=∠AGB,根据平行线的判定得出EC∥BF,根据平行线的性质得出∠B=∠AEC,求出∠AEC=∠C,根据平行线的判定得出AB∥CD即可.【解答】证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换),∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等),又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等),故答案为:对顶角相等,∠AGB,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,∠C,等量代换,AB∥CD,内错角相等,两直线平行,两直线平行,内错角相等.26.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.【分析】(1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.【解答】解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AD∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.27.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.【分析】(1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.【解答】解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴PA=2.∴S△OAP=OA×PA=×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,PA=4,此时点P移动路程为4+4=8,时间为×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为×16=8.∴点P移动的时间为4秒或8秒.

人教版七年级(下)期中模拟数学试卷(含答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交 C.平行或相交 D.平行、相交或垂直2.(3分)在﹣1.414,,π,3.,2+,3.212212221…这些数中,无理数的个数为()A.5 B.2 C.3 D.43.(3分)下面的四个图形中,∠1与∠2是对顶角的是()A. B. C. D.4.(3分)定义运算a⊗b=a(b﹣1),下面给出了关于这种运算的四个结论:①2⊗(﹣1)=﹣4;②a⊗b=b⊗a;③若a+b=1,则a⊗a=b⊗b;④若b⊗a=0,则a=0或b=1.其中正确结论的序号是()A.②④ B.②③ C.①④ D.①③5.(3分)如图所示,在数轴上点A和B之间表示整数的点有()A.1个 B.2个 C.3个 D.4个6.(3分)下列语句中不是命题的是()A.延长线段AB B.自然数也是整数 C.两个锐角的和一定是直角 D.同角的余角相等7.(3分)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a﹣b>0 B.a+b<0 C.|a|<|b| D.a•b>08.(3分)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点 B.B点 C.C点 D.D点9.(3分)A(﹣4,﹣5),B(﹣6,﹣5),则AB等于()A.4 B.2 C.5 D.310.(3分)如图,直线a,b被直线c所截,则下列是用“内错角相等,两直线平行”的方法判定a∥b的条件是()A.∠1=∠3 B.∠1=∠4 C.∠2=∠4 D.∠2+∠3=180°11.(2分)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动2格12.(2分)已知(a﹣2)2+|b+3|=0,则P(a,b)的坐标为()A.(2,3) B.(2,﹣3) C.(﹣2,3) D.(﹣2,﹣3)13.(2分)如图,△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=30°,则∠A=()A.40° B.50° C.60° D.70°14.(2分)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8 B.2 C.2 D.315.(2分)∠1与∠2是内错角,∠1=40°,则()A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定16.(2分)若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(0,3) B.(0,3)或(0,﹣3) C.(3,0) D.(3,0)或(﹣3,0)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)的算术平方根是.18.(3分)将一副直角三角尺ABC和EDF按如图所示的方式放置,使点E落在AC边上,且ED∥BC,其中∠A=60°,∠F=45°,则∠CEF的度数为.19.(4分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第1秒时,点P的坐标是,第2017秒时,点P的坐标是.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(12分)计算下列各题(1)+﹣4.(2)﹣12+(﹣2)3×.21.(8分)如图,∠1=∠2,∠3=∠4,试说明AB∥CD.22.(8分)请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院和学校的位置.23.(9分)根据下表回答问题:x1616.116.216.316.416.516.616.716.8x2256259.21262.44265.69268.96272.25275.56278.89282.24(1)272.25的平方根是(2)=,=,=(3)设的整数部分为a,求﹣4a的立方根.24.(9分)如图,△AOB中,A、B两点的坐标分别为(2,5),(6,2),把△AOB向下平移3个单位,向左平移2个单位,得到△CDE.(1)写出C、D、E三点的坐标,并在图中画出△CDE.(2)求出△CDE的面积.25.(10分)如图有下面三个判断:①∠A=∠F,②∠C=∠D,③∠1=∠2,请你用其中两个作为条件,余下一个作为结论,编一道证明题并写出证明过程.26.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.

2017-2018学年河北省沧州市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交 C.平行或相交 D.平行、相交或垂直【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选:C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.2.(3分)在﹣1.414,,π,3.,2+,3.212212221…这些数中,无理数的个数为()A.5 B.2 C.3 D.4【分析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【解答】解:﹣1.414,3.是有理数;,π,2+,3.212212221…是无理数;故选:D.【点评】本题主要考查无理数的定义,根据无理数的定义逐一进行判断是解决本题的关键,属于简单题.3.(3分)下面的四个图形中,∠1与∠2是对顶角的是()A. B. C. D.【分析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C图中的∠1与∠2是对顶角,其它都不是.故选:C.【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.4.(3分)定义运算a⊗b=a(b﹣1),下面给出了关于这种运算的四个结论:①2⊗(﹣1)=﹣4;②a⊗b=b⊗a;③若a+b=1,则a⊗a=b⊗b;④若b⊗a=0,则a=0或b=1.其中正确结论的序号是()A.②④ B.②③ C.①④ D.①③【分析】原式各项利用题中的新定义化简,计算得到结果,即可作出判断.【解答】解:①根据题意得:原式=2×(﹣1﹣1)=2×(﹣2)=﹣4,正确;②根据题意得:a⊗b=a(b﹣1),b⊗a=b(a﹣1),不相等,错误;③由a+b=1,得到b=1﹣a,a=1﹣b,则a⊗a=a(a﹣1)=﹣ab,b⊗b=b(b﹣1)=﹣ab,即a⊗a=b⊗b,正确;④b⊗a=b(a﹣1)=0,得到b=0或a=1,错误,则正确结论的序号是①③,故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(3分)如图所示,在数轴上点A和B之间表示整数的点有()A.1个 B.2个 C.3个 D.4个【分析】由于﹣2<﹣<﹣1,2<<3,由此即可确定﹣与取值范围,再即可确定它们之间的整数的个数.【解答】解:∵﹣2<﹣<﹣1,2<<3∴大于﹣且小于的整数为﹣1、0、1、2,共四个整数.故选:D.【点评】此题主要考查了无理数的估算能力,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.(3分)下列语句中不是命题的是()A.延长线段AB B.自然数也是整数 C.两个锐角的和一定是直角 D.同角的余角相等【分析】对事情做出正确或不正确的判断的句子叫做命题.根据命题的定义进行判断.【解答】解:自然数也是整数,两个锐角的和一定是直角,同角的余角相等都是命题,对情况作出了判断.故B,C,D错误.延长线段AB,只是陈述,不是命题.故选A.【点评】本题考查命题的定义,比较简单.7.(3分)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a﹣b>0 B.a+b<0 C.|a|<|b| D.a•b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,则a﹣b>0,a+b>0,|a|>|b|,ab<0.故选:A.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.8.(3分)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点 B.B点 C.C点 D.D点【分析】根据垂线段最短可得答案.【解答】解:根据垂线段最短可得:应建在A处,故选:A.【点评】此题主要考查了垂线段的性质,关键是掌握从直线外一点到这条直线所作的垂线段最短.9.(3分)A(﹣4,﹣5),B(﹣6,﹣5),则AB等于()A.4 B.2 C.5 D.3【分析】根据两点坐标特点得出AB的长度即可.【解答】解:∵A(﹣4,﹣5),B(﹣6,﹣5),∴两点纵坐标相等,则AB=﹣4﹣(﹣6)=2.故选:B.【点评】此题主要考查了坐标与图形性质,根据点的坐标性质得出两点纵坐标相等是解题关键.10.(3分)如图,直线a,b被直线c所截,则下列是用“内错角相等,两直线平行”的方法判定a∥b的条件是()A.∠1=∠3 B.∠1=∠4 C.∠2=∠4 D.∠2+∠3=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解;A.∠1=∠3不能判定a∥b,故本选项错误,B.∠1=∠4是用“同位角相等,两直线平行”的方法判定a∥b,故本选项错误,C.∠2=∠4,是用“内错角相等,两直线平行”的方法判定a∥b,故本选项正确,D.∠2+∠3=180°是用“同旁内角互补,两直线平行”的方法判定a∥b,故本选项错误,故选:C.【点评】此题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.11.(2分)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动2格【分析】根据题意,结合图形,由平移的概念求解.【解答】解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.【点评】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.12.(2分)已知(a﹣2)2+|b+3|=0,则P(a,b)的坐标为()A.(2,3) B.(2,﹣3) C.(﹣2,3) D.(﹣2,﹣3)【分析】根据非负数的性质列式求出a、b的值即可得解.【解答】解:根据题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,P(a,b)的坐标为(2,﹣3).故选:B.【点评】本题考查了点的坐标,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.(2分)如图,△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=30°,则∠A=()A.40° B.50° C.60° D.70°【分析】由DE过点C且平行于AB,∠BCE=30°,根据两直线平行,内错角相等,∠B的度数,又由△ABC中,∠ACB=90°,即可求得答案.【解答】解:∵DE∥AB,∴∠B=∠BCE=30°,∵△ABC中,∠ACB=90°,∴∠A=90°﹣∠B=60°.故选:C.【点评】此题考查了平行线的性质与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.(2分)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8 B.2 C.2 D.3【分析】按照图中的方法计算,当将64输入,由于其平方根是8,为有理数,故要重新计算,直至为无理数.【解答】解:将64输入,由于其平方根是8,为有理数,需要再次输入,得到,为2.故选:B.【点评】本题考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.要注意当得到的数是有理数时,要再次输入,直到出现无理数为止.15.(2分)∠1与∠2是内错角,∠1=40°,则()A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定【分析】两直线平行时内错角相等,不平行时无法确定内错角的大小关系.【解答】解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选:D.【点评】特别注意,内错角相等的条件是两直线平行.16.(2分)若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(0,3) B.(0,3)或(0,﹣3) C.(3,0) D.(3,0)或(﹣3,0)【分析】由于点P到y轴的距离是3,并且在x轴上,由此即可P横坐标和纵坐标,也就确定了P的坐标.【解答】解:∵P在x轴上,∴P的纵坐标为0,∵P到y轴的距离是3,∴P的横坐标为3或﹣3,∴点P坐标是(3,0)或(﹣3,0).故选:D.【点评】此题主要考查了根据点在坐标系中的位置及到坐标轴的距离确定点的坐标,解决这些问题要熟练掌握坐标系各个不同位置的坐标特点.二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.18.(3分)将一副直角三角尺ABC和EDF按如图所示的方式放置,使点E落在AC边上,且ED∥BC,其中∠A=60°,∠F=45°,则∠CEF的度数为15°.【分析】根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°﹣∠2计算即可得解.【解答】解:∵∠A=60°,∠F=45°,∴∠1=90°﹣60°=30°,∠DEF=90°﹣45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF﹣∠2=45°﹣30°=15°.故答案为:15°.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.19.(4分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第1秒时,点P的坐标是(1,1),第2017秒时,点P的坐标是(2017,1).【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2017秒时,点P的坐标.【解答】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论