版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省中央民族大附属中学芒市国际学校高一数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则等于A. B.C. D.2.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴3.在中,为边的中点,则()A. B.C. D.4.函数的定义域为A B.C. D.5.已知向量,,则在方向上的投影为A. B.8C. D.6.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)7.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.38.已知则的值为()A. B.2C.7 D.59.在一段时间内,若甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,且甲乙两人各自行动.则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.48 B.0.32C.0.92 D.0.8410.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边上一点P与点关于y轴对称,角的终边上一点Q与点A关于原点O中心对称,则______12.______________13.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度14.已知,则满足条件的角的集合为_________.15.扇形半径为,圆心角为60°,则扇形的弧长是____________16.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.18.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.19.计算:(1);(2)若,求的值20.已知函数在上的最小值为(1)求在上的单调递增区间;(2)当时,求的最大值以及取最大值时的取值集合21.已知角α的终边经过点,且为第二象限角(1)求、、的值;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力2、D【解析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D3、B【解析】由平面向量的三角形法则和数乘向量可得解【详解】由题意,故选:B【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题4、C【解析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【详解】要使得有意义,则要满足,解得.答案为C.【点睛】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;5、D【解析】依题意有投影为.6、A【解析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A7、B【解析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B8、B【解析】先算,再求【详解】,故选:B9、C【解析】根据题意求得甲乙都不去参观博物馆的概率,结合对立事件的概率计算公式,即可求解.【详解】由甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,可得甲乙都不去参观博物馆的概率为,所以甲乙两人至少有一个去参观博物馆的概率是.故选:C.10、C【解析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】根据对称,求出P、Q坐标,根据三角函数定义求出﹒【详解】解:角终边上一点与点关于轴对称,角的终边上一点与点关于原点中心对称,由三角函数的定义可知,﹒故答案为:012、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.13、410【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.14、【解析】根据特殊角的三角函数值与正弦函数的性质计算可得;【详解】解:因为,所以或,解得或,因为,所以或,即;故答案为:15、【解析】根据弧长公式直接计算即可.【详解】解:扇形半径为,圆心角为60°,所以,圆心角对应弧度为.所以扇形的弧长为.故答案为:16、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,所以,即.令,则,所以,故,即的取值范围为.18、(1)证明见解析;(2)【解析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为19、(1)(2)【解析】(1)根据分数指数幂、对数的运算法则及换底公式计算可得;(2)根据换底公式的性质得到,再根据指数对数恒等式得到,即可得解;【小问1详解】解:【小问2详解】解:,,,20、(1)单调递增区间(2)最大值为,此时的取值集合为【解析】(1)先由三角变换化简解析式,再由余弦函数的性质得出单调性;(2)由余弦函数的性质得出的值,进而再求最大值.【小问1详解】,令,,解得,所以的单调递增区间为【小问2详解】当时,,,解得,所以,当,,即,时,取得最大值,且最大值故的最大值为,此时的取值集合为21、(1);;(2).【解析】(1)由三角函数的定义和为第二象限角,求得,即点,再利用三角函数的定义,即可求解;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年城市配送排班协议
- 2026年北京市天文知识竞赛(中学组)测试题及答案
- 个人自查自纠整改报告范文5篇
- 2026年存款保险知识竞赛题库及答案汇编
- 聘用市场策划合同协议2025
- 仓储服务租赁使用协议
- 2026年急救培训急救反应能力训练卷
- 美食节策划方案
- 2026年户外活动安全指导卷
- 安全补丁应用专项训练
- 基于多因素分析的新生儿重症监护室患儿用药系统风险评价模型构建与实证研究
- 2025新能源光伏、风电发电工程施工质量验收规程
- 2025年江苏省职业院校技能大赛中职组(安全保卫)考试题库(含答案)
- 财务岗位离职交接清单模版
- 光伏电站试运行与交付标准指南
- 《车辆越野能力分级与评价体系》征求意见稿
- 外架工程劳务承包合同样本下载
- 铅球的技术教学
- 护理新技术新业务准入制度
- 学堂在线 雨课堂 学堂云 生活英语听说 章节测试答案
- 家用纺织品的设计流程与项目管理
评论
0/150
提交评论