版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市凤城市通远堡高级中学2026届数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.2.如图,某池塘里浮萍的面积(单位:)与时间t(单位:月)的关系为,关于下列说法不正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,、,则3.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要4.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知角的终边经过点,则A. B.C. D.6.若“”是“”的充分不必要条件,则()A. B.C. D.7.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.8.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22929.已知,,,则的大小关系A. B.C. D.10.已知中,,,点M是线段BC(含端点)上的一点,且,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是奇函数,当时,,若,则m的值为______.12.在中,,则_____________13.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.14.计算:________.15.已知角的终边经过点,则__16.若扇形的面积为,半径为1,则扇形的圆心角为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已经函数(Ⅰ)函数的图象可由函数的图象经过怎样变化得出?(Ⅱ)求函数的最小值,并求使用取得最小值的的集合18.已知函数是定义在上的奇函数,且.(1)求函数解析式;(2)判断函数在上的单调性,并用定义证明;(3)解关于的不等式:.19.已知函数,,.若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论(3)已知且,若.试证:.20.已知,且(1)求的值;(2)求的值.21.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【点睛】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.2、B【解析】先利用特殊点求出函数解析式为,再利用指数函数的性质即可判断出正误【详解】解:图象可知,函数过点,,函数解析式为,浮萍每月的增长率为,故选项A正确,函数是指数函数,是曲线型函数,浮萍每月增加的面积不相等,故选项B错误,当时,,故选项C正确,对于D选项,,,,,又,,故选项D正确,故选:B3、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A4、B【解析】先化简p,q,再利用充分条件和必要条件的定义判断.【详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B5、D【解析】由任意角的三角函数定义列式求解即可.【详解】由角终边经过点,可得.故选D.【点睛】本题主要考查了任意角三角函数的定义,属于基础题.6、B【解析】转化“”是“”的充分不必要条件为,分析即得解【详解】由题意,“”是“”的充分不必要条件故故故选:B7、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C8、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.9、D【解析】利用指数函数与对数函数的单调性即可得出【详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题10、D【解析】如图所示,建立直角坐标系,则,,,.利用向量的坐标运算可得.再利用数量积运算,可得.利用数量积性质可得,可得.再利用,,可得,即可得出【详解】如图所示,建立直角坐标系则,,,,,及四边形为矩形,,,.即点在直线上,,,,,,即(当且仅当或时取等号),综上可得:故选:【点睛】本题考查了向量的坐标运算、数量积运算及其性质、不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数12、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题13、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角14、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题15、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.16、【解析】直接根据扇形的面积公式计算可得答案【详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)答案见解析;(Ⅱ)最小值,对应的x的集合为.【解析】(Ⅰ)由二倍角公式降幂后,用诱导公式化正弦函数,再由图象平移得结论;(Ⅱ)利用两角和的余弦公式化函数为一个角的余弦型函数,利用余弦函数的性质得最值【详解】解:(Ⅰ),所以要得到的图象只需要把的图象向左平移个单位长度,再将所得的图象向上平移个单位长度即可.(Ⅱ).当2x+=2k+时,h(x)取得最小值.取得最小值时,对应的x的集合为.18、(1);(2)函数在上是增函数,证明见解析;(3).【解析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式;(2)判断出函数在上是增函数,任取、且,作差,因式分解后判断的符号,即可证得结论成立;(3)由得,根据函数的单调性与定义域可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:因为函数是定义在上的奇函数,则,即,可得,则,所以,,则,因此,.【小问2详解】证明:函数在上是增函数,证明如下:任取、且,则,因为,则,,故,即.因此,函数在上是增函数.【小问3详解】解:因为函数是上的奇函数且为增函数,由得,由已知可得,解得.因此,不等式的解集为.19、(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【解析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大【小问1详解】,即,因不等式解集为,所以,解得:,所以【小问2详解】函数在区间上的单调递增,证明如下:假设,则,因为,所以,所以,即当时,,所以函数在区间上的单调递增【小问3详解】由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数20、(1)7(2)【解析】(1)根据题意求得,然后利用两角和的正切公式即可得出答案;(2)利用诱导公式及二倍角的余弦公式,结合平方关系化弦为切计算即可得解.【小问1详解】解:由已知得,或,∴或,又∵,∴或,又∵,∴,∴,∴;【小问2详解】解:.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年浙江省杭州市五年级上学期科学知识竞赛试题及答案
- 幼师简笔画培训课件
- 20XX年义齿项目年终总结报告
- 2024年湖南省(147所)辅导员考试参考题库附答案
- 2025宝鸡市金台区硖石镇卫生院招聘(公共基础知识)测试题附答案
- 广东自考试题及答案
- 2026年时事政治测试题库含答案
- 2025年南平辅警招聘考试真题附答案
- 2026年时事政治测试题库及参考答案【培优a卷】
- 2025年鹰潭辅警协警招聘考试真题附答案
- 工贸行业消防安全培训
- 旅游饭店星级评定标准与划分解析
- 国学馆展厅设计
- 青少年足球技能等级划分技术规范(男子U7-U12)
- 国开机考答案 管理学基础2025-06-21
- 企业IT顾问兼职聘用合同
- 2025至2030年中国直线模组行业市场现状调研及发展前景预测报告
- DB34-T2328-2015-旅行社研学旅行服务规范-安徽省
- 骨科围手术期静脉血栓栓塞症预防指南
- 中药材入股合同协议书
- 智能化系统在铁路装备检修中的应用-洞察阐释
评论
0/150
提交评论