陕西省西安市第八中学2026届高一上数学期末综合测试模拟试题含解析_第1页
陕西省西安市第八中学2026届高一上数学期末综合测试模拟试题含解析_第2页
陕西省西安市第八中学2026届高一上数学期末综合测试模拟试题含解析_第3页
陕西省西安市第八中学2026届高一上数学期末综合测试模拟试题含解析_第4页
陕西省西安市第八中学2026届高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市第八中学2026届高一上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴2.中国扇文化有着深厚的文化底蕴,小小的折扇传承千年的制扇工艺与书画艺术,折扇可以看作是从一个圆面中剪下的扇形制作而成,设折扇的面积为,圆面中剩余部分的面积为,当时,折扇的圆心角的弧度数为()A. B.C. D.3.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知,则a,b,c的大小关系为()A. B.C. D.5.已知定义在上的奇函数满足当时,,则关于的函数,()的所有零点之和为()A. B.C. D.6.定义在上的偶函数满足当时,,则A. B.C. D.7.根据表格中的数据,可以判定函数的一个零点所在的区间为A. B.C. D.8.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.9.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.10.已知集合,区间,则=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第二象限角,且,则_____12.若,则___________.13.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色.下图是2009年至2016年高铁运营总里程数的折线图图(图中的数据均是每年12月31日的统计结果).根据上述信息下列结论中,所有正确结论的序号是____①2015年这一年,高铁运营里程数超过0.5万公里;②2013年到2016年高铁运营里程平均增长率大于2010到2013高铁运营里程平均增长率;③从2010年至2016年,新增高铁运营里程数最多的一年是2014年;④从2010年至2016年,新增高铁运营里程数逐年递增;14.已知函数则_______.15.已知函数,若函数有三个零点,则实数的取值范围是________.16.已知函数fx=log5x.若f三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足,.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?18.已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值19.已知全集,集合,(1)求,;(2)若,,求实数m的取值范围.20.已知函数且.(1)试判断函数的奇偶性;(2)当时,求函数的值域;(3)若对任意,恒成立,求实数的取值范围21.已知向量为不共线向量,若向量与共线求k的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键2、C【解析】设折扇的圆心角为,则圆面中剩余部分的圆心角为,根据扇形的面积公式计算可得;【详解】解:设折扇的圆心角为,则圆面中剩余部分的圆心角为,圆的半径为,依题意可得,解得;故选:C3、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C4、B【解析】首先求出、,即可判断,再利用作差法判断,即可得到,再判断,即可得解;【详解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故选:B5、B【解析】作函数与的图象,从而可得函数有5个零点,设5个零点分别为,从而结合图象解得【详解】解:作函数与的图象如下,结合图象可知,函数与的图象共有5个交点,故函数有5个零点,设5个零点分别为,∴,,,故,即,故,故选B【点睛】本题考查了函数零点与函数的图象的关系应用及数形结合的思想应用,属于常考题型.6、B【解析】分析:先根据得周期为2,由时单调性得单调性,再根据偶函数得单调性,最后根据单调性判断选项正误.详解:因为,所以周期为2,因为当时,单调递增,所以单调递增,因为,所以单调递减,因为,,所以,,,,选B.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行.7、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,

这个c也就是方程f(x)=0的根.由此可判断根所在区间.8、B【解析】所以,所以。故选B。9、A【解析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征10、D【解析】利用交集的运算律求【详解】∵,,∴.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.12、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题13、②③【解析】根据数据折线图,分别进行判断即可.【详解】①看2014,2015年对应的纵坐标之差小于2-1.5=0.5,故①错误;②连线观察2013年到2016年两点连线斜率更大,故②正确;③2013年到2014年两点纵坐标之差最大,故③正确;④看相邻纵坐标之差是否逐年增加,显然不是,有增有减,故④错误;故答案为:②③.14、【解析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【详解】∵,,则∴.故答案为:.15、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.16、1,2【解析】结合函数的定义域求出x的范围,分x=1,0<x<1以及1<x<2三种情况进行讨论即可.【详解】因为fx=log5x的定义域为0,+当x=1时,fx当0<x<1时,2-x>1,则fx<f2-x等价于log5x<log52-x,所以-当1<x<2时,0<2-x<1,则fx<f2-x等价于log5x<log52-x,所以log5x<-log5所以x的取值范围是1,2.故答案为:1,2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)88.5万元(2)该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【解析】(1)先确定甲乙合作社投入量,再分别代入对应收益函数,最后求和得结果,(2)先根据甲收益函数,分类讨论,再根据对应函数单调性确定最值取法,最后比较大小确定最大值【详解】解:(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个个合作社的总收益为:(万元)(2)甲合作社的投入为万元,则乙合作社的投入为万元,当时,则,.令,得,则总收益为,显然当时,函数取得最大值,即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元、当时,则,则,则在上单调递减,.即此时甲、乙总收益小于87万元.又,∴该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【点睛】本题考查利用分段函数模型求函数最值,考查基本分析求解能力,属中档题.18、(Ⅰ)(Ⅱ)【解析】(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.19、(1),或(2)【解析】(1)首先解指数不等式求出集合,再根据交集、并集、补集的定义计算可得;(2)依题意可得,即可得到不等式,解得即可;小问1详解】解:由,即,解得,所以,又,所以,或,所以或;【小问2详解】解:因为,所以,所以,解得,即;20、(1)偶函数;(2);(3).【解析】(1)先求得函数的定义域为R,再由,可判断函数是奇偶性;(2)由,所以,以及对数函数的单调性可得函数的值域;(3)对任意,恒成立,等价于,分,和,分别求得函数的最值,可求得实数的取值范围.【详解】(1)因为且,所以其定义域为R,又,所以函数是偶函数;(2)当时,,因为,所以,所以函数的值域为;(3)对任意,恒成立,等价于,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论