版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省百校大联考2026届高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.借助信息技术画出函数和(a为实数)的图象,当时图象如图所示,则函数的零点个数为()A.3 B.2C.1 D.02.设,则A. B.C. D.3.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.4.若函数在区间上为减函数,在区间上为增函数,则A.3 B.2C. D.5.如果两个函数的图象经过平移后能够重合,则称这两个函数为“互为生成”函数,给出下列函数:;;;,其中“互为生成”函数的是A. B.C. D.6.已知方程的两根分别为、,且、,则A. B.或C.或 D.7.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立8.设,,,则A. B.C. D.9.“,”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件10.若===1,则a,b,c的大小关系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a二、填空题:本大题共6小题,每小题5分,共30分。11.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.12.,的定义域为____________13.符号表示不超过的最大整数,如,定义函数,则下列命题中正确是________.①函数最大值为;②函数的最小值为;③函数有无数个零点;④函数是增函数;14.已知定义在R上的函数f(x),对任意实数x都有f(x+4)=-f(x),若函数f(x)的图象关于y轴对称,且f(-5)=2,则f(2021)=_____15.若,则________.16.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,先化简f(α),再求f()的值;(2)若已知sin(-x)=,且0<x<,求sin的值.18.已知,求下列各式的值.(1);(2).19.如图,在中,,,点在的延长线上,点是边上的一点,且存在非零实数,使.(Ⅰ)求与的数量积;(Ⅱ)求与的数量积.20.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.21.已知函数(且)的图象过点.(1)求函数的解析式;(2)解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由转化为与的图象交点个数来确定正确选项.【详解】令,,所以函数的零点个数即与的图象交点个数,结合图象可知与的图象有个交点,所以函数有个零点.故选:B2、B【解析】因为,所以.选B3、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积4、C【解析】由题意得当时,函数取得最小值,∴,∴又由条件得函数的周期,解得,∴.选C5、D【解析】根据“互为生成”函数的定义,利用三角恒等变换化简函数的解析式,再结合函数的图象变换规律,得出结论【详解】∵;;;,故把中的函数的图象向右平移后再向下平移1个单位,可得中的函数图象,故为“互为生成”函数,故选D【点睛】本题主要主要考查新定义,三角恒等变换,函数的图象变换规律,属于中档题6、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.7、D【解析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立8、B【解析】本题首先可以通过函数的性质判断出和的大小,然后通过对数函数的性质判断出与的大小关系,最后即可得出结果【详解】因为函数是增函数,,,所以,因为,所以,故选B【点睛】本题主要考查了指数与对数的相关性质,考查了运算能力,考查函数思想,体现了基础性与应用性,考查推理能力,是简单题9、A【解析】根据充分条件和必要条件的定义判断.【详解】∵“,”可推出“”,“”不能推出“,”,例如,时,,∴“,”是“”充分不必要条件.故选:A10、D【解析】由求出的值,由求得的值,由=1求得的值,从而可得答案【详解】由,可得故,由,可得,故,由,可得,故,故选D【点睛】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.12、【解析】由,根据余弦函数在的图象可求得结果.【详解】由得:,又,,即的定义域为.故答案为:.13、②③【解析】利用函数中的定义结合函数的最值、周期以及单调性即可求解.【详解】函数,函数的最大值为小于,故①不正确;函数的最小值为,故②正确;函数每隔一个单位重复一次,所以函数有无数个零点,故③正确;由函数图像,结合函数单调性定义可知,函数在定义域内不单调,故④不正确;故答案为:②③【点睛】本题考查的是取整函数问题,在解答时要充分理解的含义,注意对新函数的最值、单调性以及周期性加以分析,属于基础题.14、2【解析】先判断函数的奇偶性,再由恒成立的等式导出函数f(x)的周期,利用奇偶性及周期性化简求解即得.【详解】因为函数f(x)的图象关于y轴对称,则f(x)为偶函数,由f(x+4)=-f(x),可得f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,则f(2021)=f(5+252×8)=f(5)=f(-5)=2,所以f(2021)=2.故答案为:215、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.16、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)利用诱导公式化简f(α)即可;(2)-x和互余,所以sin=cos,再结合已知条件即可求解.【详解】(1);f()=;(2),.18、(1)2(2)【解析】(1)依据三角函数诱导公式化简后去求解即可解决;(2)转化为求三角函数齐次式的值即可解决.【小问1详解】原式.【小问2详解】原式.19、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,从而得到三角形为等腰三角形,可得,由数量积的定义可得.(Ⅱ)根据所给的向量式可得点在的角平分线上,故可得,所以,因为,所以得到.设设,则得到,,根据数量积的定义及运算率可得所求试题解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以点在的角平分线上,又因为点是边上的一点,所以由角平分线性质定理得,所以.因为,所以.设,则,由,得,所以,又,所以点睛:解题时注意在三角形中常见的向量与几何特征的关系:(1)在中,若或,则点是的外心;(2)在中,若,则点是的重心;(3)在中,若,则直线一定过的重心;(4)在中,若,则点是的垂心;(5)在中,若,则直线通过的内心.20、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即,所以是奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽省六安市寿县保安员招聘考试题库附答案解析
- 专业技能考试题库及答案
- 2026年浙江长征职业技术学院高职单招职业适应性考试参考题库及答案详解
- 导尿术护理操作常见并发症预防及处理试题及答案
- 历年国家司法考试真题及答案
- H7N9禽流感试题附答案
- 2025年电工(高级)资格证考试题库试题【a卷】附答案详解
- 2026年江阳城建职业学院高职单招职业适应性考试模拟试题及答案详解
- 2025年南昌工学院高职单招综合素质考试题库及答案解析
- 2026年徐州工业职业技术学院单招职业技能笔试备考题库及答案详解
- 【MOOC】信号与系统-北京邮电大学 中国大学慕课MOOC答案
- 定制衣柜销售合同范本2024年
- 合同书包养模板
- DL∕T 1987-2019 六氟化硫气体泄漏在线监测报警装置技术条件
- 对外汉语教学法智慧树知到期末考试答案章节答案2024年西北师范大学
- 华北地区大雾分析报告
- 咳嗽咳痰的中医护理
- 二年级上学期语文非纸笔考试试题
- 肝恶性肿瘤护理教学查房课件
- 毛泽东思想和中国特色社会主义理论体系概论知识点归纳
- 南充职业技术学院辅导员考试题库
评论
0/150
提交评论