版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆康德卷2026届高二上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列三个数,,()A.都不大于-4 B.至少有一个不大于-4C.都不小于-4 D.至少有一个不小于-42.丹麦数学家琴生(Jensen)是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,在上恒成立,则称函数在上为“凹函数”.则下列函数在上是“凹函数”的是()A. B.C. D.3.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.4.已知为原点,点,以为直径的圆的方程为()A. B.C. D.5.已知直线平分圆C:,则最小值为()A.3 B.C. D.6.一个动圆与定圆相外切,且与直线相切,则动圆圆心的轨迹方程为()A. B.C. D.7.已知等比数列的前n项和为,,,则()A. B.C. D.8.下列函数求导错误的是()A.B.C.D.9.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.直线l在x轴上的截距为1C.若直线m:,则D.过与直线l平行的直线方程是10.已知圆M与直线与都相切,且圆心在上,则圆M的方程为()A. B.C. D.11.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.812.已知数列满足,且,那么()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,请写出一个符合条件的通项公式______14.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.15.已知平面的法向量为,平面的法向量为,若,则___________.16.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程18.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.19.(12分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.20.(12分)如图,在平面直角坐标系上,已知圆的直径,定直线到圆心的距离为,且直线垂直于直线,点是圆上异于、的任意一点,直线、分别交与、两点(1)求过点且与圆相切的直线方程;(2)若,求以为直径的圆方程;(3)当点变化时,以为直径的圆是否过圆内的一定点,若过定点,请求出定点;若不过定点,请说明理由21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值22.(10分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用反证法设,,都大于,结合基本不等式即可得出结论.【详解】设,,都大于,则,由于,故,利用基本不等式可得,当且仅当时等号成立,这与假设所得结论矛盾,故假设不成立,故下列三个数,,至少有一个不大于,故选:B.2、B【解析】根据“凹函数”的定义逐项验证即可解出【详解】对A,,当时,,所以A错误;对B,,在上恒成立,所以B正确;对C,,,所以C错误;对D,,,因为,所以D错误故选:B3、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.4、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒5、D【解析】根据直线过圆心求得,再利用基本不等式求和的最小值即可.【详解】根据题意,直线过点,即,则,当且仅当,即时取得最小值.故选:D.6、D【解析】根据点到直线的距离与点到点之间距离的关系化简即可.【详解】定圆的圆心,半径为2,设动圆圆心P点坐标为(x,y),动圆的半径为r,d为动圆圆心到直线的距离,即r,则根据两圆相外切及直线与圆相切的性质可得,所以,化简得:∴动圆圆心轨迹方程为故选:D7、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.8、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C9、D【解析】A.将直线方程的一般式化为斜截式可得;B.令y=0可得;C.求出直线m斜率即可判断;D.设要求直线的方程为,将代入即可.【详解】根据题意,依次分析选项:对于A,直线l:,即,其斜率,则倾斜角是,A错误;对于B,直线l:,令y=0,可得,l在x轴上的截距为,B错误;对于C,直线m:,其斜率,,故直线m与直线l不垂直,C错误;对于D,设要求直线的方程为,将代入,可得t=0,即要求直线为,D正确;故选:D10、A【解析】由题可设,结合条件可得,即求.【详解】∵圆心在上,∴可设圆心,又圆M与直线与都相切,∴,解得,∴,即圆的半径为1,圆M的方程为.故选:A.11、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.12、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)14、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:15、2【解析】由,可两平面的法向量也平行,从而可求出,进而可求得答案【详解】因为平面的法向量为,平面的法向量为,,所以∥,所以存实数使,所以,所以,解得,所以,故答案为:216、4【解析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)点和的中垂线经过圆心,两直线联立方程得圆心坐标,再利用两点间距离公式求解半径.(2)已知弦长,求解直线方程,分类讨论斜率是否存在.小问1详解】点和的中点为,,所以中垂线的,利用点斜式得方程为,联立方程得圆心坐标为,所以圆C的标准方程为.【小问2详解】当过点的直线l斜率不存在时,直线方程为,此时弦长,符合题意.当过点的直线l斜率存在时,设直线方程为,化简得,弦心距,所以,解得,所以直线方程为.综上所述直线方程为或.18、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以19、(1)(2)【解析】(1)设圆的方程为,代入所过的点后可求,从而可求圆的方程.(2)利用两圆的方程可求公共弦的方程,利用垂径定理可求公共弦的弦长.【小问1详解】设圆的方程为,,,所以圆的方程为;【小问2详解】由圆的方程和圆的方程可得公共弦的方程为:,整理得到:,到公共弦距离为,故公共弦的弦长为:.20、(1)或(2)(3)过定点,定点坐标为【解析】(1)对所求直线的斜率是否存在进行分类讨论,在所求直线斜率不存在时,直接验证直线与圆相切;在所求直线斜率存在时,设所求直线方程为,利用点到直线的距离公式可得出关于的等式,求出的值,综合可得出所求直线的方程;(2)分点在轴上方、点在轴下方两种情况讨论,求出点、的坐标,可得出所求圆的圆心坐标和半径,即可得出所求圆的方程;(3)设直线的方程为,其中,求出点、的坐标,可求得以线段为直径的圆的方程,并化简圆的方程,可求得定点的坐标.【小问1详解】解:易知圆的方程为,圆心为原点,半径为,若所求直线的斜率不存在,则所求直线的方程为,此时直线与圆相切,合乎题意,若所求直线的斜率存在,设所求直线的方程为,即,由已知可得,解得,此时所求直线的方程为.综上所述,过点且与圆相切的直线方程为或.【小问2详解】解:易知直线的方程为,、,若点在轴上方,则直线的方程为,在直线的方程中,令,可得,即点,直线的方程为,在直线的方程中,令,可得,即点,线段的中点为,且,此时,所求圆的方程为;若点在轴下方,同理可求得所求圆的方程为.综上所述,以为直径的圆方程为.【小问3详解】解:不妨设直线的方程为,其中,在直线的方程中,令,可得,即点,因为,则直线的方程为,在直线的方程中,令,可得,即点,线段中点为,,所以,以线段为直径的圆的方程为,即,由,解得,因此,当点变化时,以为直径的圆是否过圆内的定点.21、(1)(2)【解析】(1)利用正弦定理化简,通过两角和与差的三角函数求出,即可得到结果(2)利用三角形的面积求出,通过由余弦定理求解即可【详解】解:(1)因为bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【点睛】本题主要考查了利用正、余弦定理及三角形的面积公式解三角形问题,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 康复科患者功能锻炼依从性提升策略
- 康复医疗数据驱动的个性化方案决策支持
- 应急物资储备可持续性保障策略-1
- 应力分布的优化策略
- 平台试验中的脱落率预测与统计补救策略-1
- 帕金森病疲劳综合征的运动时间安排个体化方案应用
- 师资科研成果培训转化机制
- 左束支阻滞形态与CRT优化策略选择
- 嵌合抗原受体治疗跨境剂量优化策略
- 屈光术后泪膜稳定性下降的干预策略
- 2025贵州铜仁市“千名英才·智汇铜仁”本地引才413人考试题库附答案
- 山西省2026届高三第一次八省联考语文(T8联考)(含答案)
- 2025年杭州余杭水务有限公司招聘36人参考笔试题库及答案解析
- 2025年秋季少先队工作总结:守一份初心育一路芬芳
- 2026中国中式餐饮白皮书-
- 2025年北森fla领导力测试题及答案
- T∕CCSAS 061-2025 特殊作业监护人员履责管理要求
- 藏族颤膝动律课件
- 2025年秋鲁教版(新教材)小学信息科技四年级上册期末综合测试卷及答案(共三套)
- 企业新员工入职教育培训综合试题及答案
- 出租车司机安全培训课件
评论
0/150
提交评论