版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省茂名地区2026届高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,记,则下列说法正确的是()A.事件“”的概率为 B.事件“t是奇数”与“”互为对立事件C.事件“”与“”互为互斥事件 D.事件“且”的概率为2.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.503.四棱锥中,底面ABCD是平行四边形,点E为棱PC的中点,若,则等于()A.1 B.C. D.24.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.5.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.96.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.7.已知命题p:∀x>2,x2>2x,命题q:∃x0∈R,ln(x02+1)<0,则下列命题是真命题的是()A.p∧ B.p∨C.p∧q D.p∨q8.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.9.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.10.已知实数x,y满足,则的最大值为()A. B.C.2 D.111.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.12.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线的倾斜角为,则双曲线的离心率为___________.14.与直线和直线的距离相等的直线方程为______15.若关于的不等式的解集为R,则的取值范围是______.16.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.18.(12分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.19.(12分)如图,正方形和四边形所在的平面互相垂直,.(1)求证:平面;(2)求平面与平面的夹角.20.(12分)等差数列的前项和为,数列是等比数列,满足,,,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求.21.(12分)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?22.(10分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】计算出事件“t=12”的概率可判断A;根据对立事件的概念,可判断B;根据互斥事件的概念,可判断C;计算出事件“t>8且mn<32”的概率可判断D;【详解】连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,则共有个基本事件,记t=m+n,则事件“t=12”必须两次都掷出6点,则事件“t=12”的概率为,故A错误;事件“t是奇数”与“m=n”为互斥不对立事件,如事件m=3,n=5,故B错误;事件“t=2”与“t≠3”不是互斥事件,故C错误;事件“t>8且mn<32”有共9个基本事件,故事件“t>8且mn<32”的概率为,故D正确;故选:D2、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.3、B【解析】运用向量的线性运用表示向量,对照系数,求得,代入可得选项.【详解】因为,所以,所以,所以,解得,所以,故选:B.4、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A5、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等6、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.7、B【解析】取x=4,得出命题p是假命题,由对数的运算得出命题q是假命题,再判断选项.【详解】命题p:∀x>2,x2>2x,是假命题,例如取x=4,则42=24;命题q:∃x0∈R,ln(x02+1)<0,是假命题,∵∀x∈R,ln(x2+1)≥0.则下列命题是真命题的是.故选:B.8、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质9、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.10、A【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求出的最大值.【详解】作出可行域如图所示,由可知,此直线可用由直线平移得到,求的最大值,即直线的截距最大,当直线过直线的交点时取最大值,即故选:11、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).12、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用双曲线的渐近线的倾斜角,求解,关系,然后求解离心率,即可求解.【详解】双曲线一条渐近线的倾斜角为,可得,所以,所以双曲线的离心率为.故答案为:2.14、【解析】设直线方程为,根据两平行直线之间距离公式即可求解.【详解】设该直线为:,则由两平行直线之间距离公式得:,故该直线为:;故答案为:.15、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:16、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:3600三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.18、(1)(2)【解析】(1)通过构造新数列求解;(2)由(1)得,再研究其单调性,从而得到最值,再解不等式即可求解.【小问1详解】由,假设其变形为,则有,所以,又.所以,即.【小问2详解】由(1),所以,令,则,所以,所以是递减数列,所以,所以使得不等式对一切正整数n都成立,则,即,因为为正实数,所以.19、(1)证明见解析(2)【解析】(1)由题意可证得,所以以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用空间向量证明,(2)求出两个平面的法向量,利用空间向量求解【小问1详解】∵平面平面,平面平面,∴平面,∴,以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则,.设平面的法向量为,则,令,则,∵平面,∴∥平面.【小问2详解】,设平面的法向量为,则,令,则.∴.由图可知平面与平面的夹角为锐角,所以平面与平面的夹角为.20、(1),(2)【解析】(1)根据条件列关于公差与公比的方程组,解方程组可得再根据等差数列与等比数列通项公式得结果(2)根据错误相减法求数列的前项和为,注意作差时项符号的变化以及求和时项数的确定试题解析:(1)设数列的公差为,数列的公比为,则由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.21、(1)24(种)(2)21(种)【解析】(1)先根据共付费6元得一人付费2元一人付费4元,再确定人与乘坐站数,即可得结果;(2)先根据共付费8元得一人付费2元一人付费6元或两人都付费4元,再求甲比乙先下地铁的方案数.【小问1详解】由已知可得:甲、乙两人共付费6元,则甲、乙一人付费2元一人付费4元,又付费2元的乘坐站数有1,2,3三种选择,付费4元的乘坐站数有4,5,6,7四种选,所以甲、乙下地铁的方案共有(3×4)×2=24(种).【小问2详解】甲、乙两人共付费8元,则甲、乙一人付费2元一人付费6元或两人都付费4元;当甲付费2元,乙付费6元时,甲乘坐站数有1,2,3三种选择,乙乘坐站数有8,9,10,11,12五种选择,此时,共有35=15(种)方案;当两人都付费4元时,若甲在第4站下地铁,则乙可在第5,6,7站下地铁,有3种方案;若甲在第5站下地铁,则乙可在第6,7站下地铁,有2种方案;若甲在第6站下地铁,则乙可在第7站下地铁,有1种方案;综上,甲比乙先下地铁的方案共有(种).22、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年“安康杯”安全知识竞赛试题库及答案
- 成本效益分析社区健康公平防控
- 戈谢病基因治疗的联合用药方案优化
- 辐射安全培训模拟卷及解析
- 委托合同协议条款
- AI算法开发合作协议
- 改进作风狠抓落实四查四问自查自纠报告
- 2026年安全设备质量保证协议
- 慢病预防的社会支持网络构建
- 慢病预防的健康城市治理路径
- 机械点检员职业资格知识考试题及答案
- 2024人形机器人产业半年研究报告
- NB-T20048-2011核电厂建设项目经济评价方法
- 生物医学分析化学方程式总结
- 钯金的选矿工艺
- 家庭系统疗法
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 四川省遂宁市2024届高三上学期零诊考试高三生物答案
- 桥梁施工技术培训课件
- 南部山区仲宫街道乡村建设规划一张表
- 锅炉焊接工艺规程
评论
0/150
提交评论