版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省金陵中学数学高一上期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,周期为的是()A. B.C. D.2.设a>0,b>0,化简的结果是()A. B.C. D.-3a3.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面4.已知函数,则A. B.0C.1 D.5.函数的零点一定位于下列哪个区间().A. B.C. D.6.当时,在同一坐标系中,函数与的图像是()A. B.C. D.7.已知集合,,则()A. B.C. D.8.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④9.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c10.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可)12.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________13.已知角的终边经过点,则________.14.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____15.已知函数是定义在上且以3为周期的奇函数,当时,,则时,__________,函数在区间上的零点个数为__________16.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,求,的值;求的值18.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求的值.19.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.20.已知角的终边有一点.(1)求的值;(2)求的值.21.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C2、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.3、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.4、C【解析】根据自变量所在的范围先求出,然后再求出【详解】由题意得,∴故选C【点睛】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题5、C【解析】根据零点存在性定理可得结果.【详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【点睛】关键点点睛:掌握零点存在性定理是解题关键.6、D【解析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于,所以为上的递减函数,且过;为上的单调递减函数,且过,故只有D选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性判断,考查函数图像的识别,属于基础题.7、B【解析】直接利用交集运算法则得到答案.【详解】,,则故选:【点睛】本题考查了交集的运算,属于简单题.8、A【解析】依次判断四种变换方式的结果是否符合题意,选出正确变换【详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【点睛】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上9、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B10、A【解析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【详解】根据条件:;故选A【点睛】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、,(答案不唯一)【解析】由充分条件和必要条件的定义求解即可【详解】因为当时,一定成立,而当时,可能,可能,所以是的充分不必要条件,故答案为:(答案不唯一)12、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷13、【解析】根据终边上的点,结合即可求函数值.【详解】由题意知:角在第一象限,且终边过,∴.故答案为:.14、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,15、①.②.5【解析】(1)当时,,∴,又函数是奇函数,∴故当时,(2)当时,令,得,即,解得,即,又函数为奇函数,故可得,且∵函数是以3为周期的函数,∴,,又,∴综上可得函数在区间上的零点为,共5个答案:,516、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】正切的二倍角公式得,再由同角三角函数关系式即可得的值.先计算然后由角的范围即可确定角.【详解】,且,所以:故:,,,所以:,由于:所以:,所以:,,,,所以:【点睛】本题考查三角函数关系式的恒等变换,考查给值求角问题,通过求角的某种三角函数值来求角,在选取函数时,有以下原则:用已知三角函数值的角来表示未知角,(1)已知正切函数值,则选正切函数;(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是,则选正弦、余弦皆可;若角的范围是,则选余弦较好;若角的范围为,则选正弦较好18、(1)f(x)的最大值是4(2)-【解析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【点睛】本题考查平面向量的综合题19、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.20、(1);(2).【解析】(1)根据终边上的点及正切函数的定义求即可.(2)利用诱导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扶梯设备销售合同范本
- 承包拉土车队合同范本
- 工程出资合作合同范本
- 安检机租赁合同协议书
- 学校与家长违纪协议书
- 异业合作相亲合同范本
- 护坡工程居间合同范本
- 房屋维修合同补充协议
- 托管机构转让合同范本
- 娱乐行业员工合同范本
- 2.2气候课件-八年级地理上学期人教版
- 安宁疗护诊疗流程多学科团队合作流程
- 《数据标注实训(初级)》中职全套教学课件
- 部编版二年级上册语文全册教案
- DB42T 831-2012 钻孔灌注桩施工技术规程
- 新生儿循环系统疾病护理
- DBJ04-T489-2025 《智慧园林建设标准》
- 2025-2030中国石膏墙板行业市场发展趋势与前景展望战略研究报告
- 2024年度企业所得税汇算清缴最 新税收政策解析及操作规范专题培训(洛阳税务局)
- 实验室检测质量控制与管理流程
- 2024年征兵心理测试题目
评论
0/150
提交评论