山西省汾阳市第二高级中学、文水二中2026届数学高一上期末经典试题含解析_第1页
山西省汾阳市第二高级中学、文水二中2026届数学高一上期末经典试题含解析_第2页
山西省汾阳市第二高级中学、文水二中2026届数学高一上期末经典试题含解析_第3页
山西省汾阳市第二高级中学、文水二中2026届数学高一上期末经典试题含解析_第4页
山西省汾阳市第二高级中学、文水二中2026届数学高一上期末经典试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省汾阳市第二高级中学、文水二中2026届数学高一上期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.3.在平行四边形中,,则()A. B.C.2 D.44.若函数,则的单调递增区间为()A. B.C. D.5.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.6.的值为()A. B.C. D.7.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC8.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]9.三条直线l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,则a+b等于()A. B.6C.或6 D.0或410.已知幂函数的图象过点(4,2),则()A.2 B.4C.2或-2 D.4或-4二、填空题:本大题共6小题,每小题5分,共30分。11.函数是偶函数,且它的值域为,则__________12.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)13.已知函数,正实数,满足,且,若在区间上的最大值为2,则________.14.已知是定义在上奇函数,且函数为偶函数,当时,,则______15.已知幂函数(是常数)的图象经过点,那么________16.实数,满足,,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明18.已知的顶点,边上的中线所在的直线方程为,边上的高所在的直线方程为.(1)求点的坐标;(2)求所在直线的方程.19.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由20.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值21.已知函数(1)判断函数的奇偶性,并证明你的结论;(2)解不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据充分性、必要性的定义,结合特例法进行判断即可.【详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A2、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B3、B【解析】由条件根据两个向量的加减法的法则,以及其几何意义,可得,,然后转化求解即可【详解】可得,,两式平方相加可得故选:4、A【解析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.5、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.6、B【解析】由诱导公式可得,故选B.7、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理8、A【解析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【点睛】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.9、C【解析】根据相互垂直的两直线斜率之间的关系对b分类讨论即可得出【详解】l1,l2都和l3垂直,①若b=0,则a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,则1,1,联立解得a=2,b=4,∴a+b=6综上可得:a+b的值为﹣2或6故选C【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于基础题10、B【解析】设幂函数代入已知点可得选项.【详解】设幂函数又函数过点(4,2),,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.12、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.13、【解析】先画出函数图像并判断,再根据范围和函数单调性判断时取最大值,最后计算得到答案.【详解】如图所示:根据函数的图象得,所以.结合函数图象,易知当时在上取得最大值,所以又,所以,再结合,可得,所以.故答案为:【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.14、【解析】求出函数的周期即可求解.【详解】根据题意,为偶函数,即函数图象关于直线对称,则有,又由为奇函数,则,则有,即,即函数是周期为4的周期函数,所以,故答案为:15、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:16、8【解析】因为,,所以,,因此由,即两交点关于(4,4)对称,所以8点睛:利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)f(x)在(0,1)上单调递减,证明见解析.【解析】(1)根据即可求出a=b=1,从而得出;(2)容易判断f(x)在区间(0,1)上单调递减,根据减函数的定义证明:设x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根据x1,x2∈(0,1),且x1<x2说明f(x1)>f(x2)即可【详解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在区间(0,1)上单调递减,证明如下:设x1,x2∈(0,1),且x1<x2,则:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上单调递减【点睛】本题考查减函数的定义,根据减函数的定义证明一个函数是减函数的方法和过程,清楚的单调性18、(1)(2)【解析】(1)根据AC和BH的垂直关系可得到直线的方程为,再代入点A的坐标可得到直线的方程为,联立CM直线可得到C点坐标;(2)设,则,将两个点分别带入BH和CM即可求出,结合第一问得到BC的方程解析:(1)因为,的方程为,不妨设直线的方程为,将代入得,解得,所以直线的方程为,联立直线的方程,即,解得点的坐标为.(2)设,则,因为点在上,点在上,所以,解得,所以,所以直线的方程为,整理得.19、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.20、(1)(2)-【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题21、(1)f(x)为奇函数,证明见解析;(2)当a>1时,不等式的解集为(0,1);当0<a<1时,不等式的解集为(﹣1,0)【解析】(1)先求出函数的定义域,再求出f(﹣x)与f(x)的关系,利用函数的奇偶性的定义,得出结论;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论