版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市重点中学2026届高一数学第一学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,且,则等于()A.100 B.C. D.2.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.3.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.4.已知平面直角坐标系中,点,,,、、,,是线段AB的九等分点,则()A.45 B.50C.90 D.1005.“不等式在上恒成立”的一个必要不充分条件是()A. B.C. D.6.函数的大致图象是A. B.C. D.7.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.C. D.8.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%9.等于A. B.C. D.10.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知是x的方程的两个实根,则________12.已知,,则________.(用m,n表示)13.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.14.已知扇形的圆心角为,其弧长是其半径的2倍,则__________15.函数f(x),若f(a)=4,则a=_____16.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.18.已知不等式的解集是(1)若且,求的取值范围;(2)若,求不等式的解集19.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程20.化简或求值:(1);(2)21.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C2、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C3、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.4、B【解析】利用向量的加法以及数乘运算可得,再由向量模的坐标表示即可求解.【详解】,∴故选:B.5、C【解析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式在上恒成立”,所以当时,原不等式为在上不是恒成立的,所以,所以“不等式在上恒成立”,等价于,解得.A选项是充要条件,不成立;B选项中,不可推导出,B不成立;C选项中,可推导,且不可推导,故是的必要不充分条件,正确;D选项中,可推导,且不可推导,故是的充分不必要条件,D不正确.故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含6、D【解析】关于对称,且时,,故选D7、C【解析】由题意可得,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则可得到一个棱长为2的小正四面体,该小正四面体的高为,且由正四面体的性质可知,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心是重合的,所以小正四面体的中心到底面的距离是,正四面体的中心到底面的距离是,所以可知正四面体的高的最小值为,故选择C考点:几何体的体积8、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B9、A【解析】分析:由条件利用诱导公式、两角和差的余弦公式化简所给的式子,可得结果.详解:.故选:A.点睛:本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.10、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.12、【解析】根据指数式与对数式的互化,以及对数的运算性质,准确运算,即可求解.【详解】因为,,所以,,所以,可得.故答案为:13、##-0.4【解析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.14、-1【解析】由已知得,所以则,故答案.15、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.16、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数.(2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,而,故即.点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具.18、(1)(2)【解析】(1)根据且知道满足不等式,不满足不等式,解出即可得出答案(2)根据知道是方程的两个根,利用韦达定理求出a值,再带入不等式,解出不等式即可【详解】(1)(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为【点睛】本题考查元素与集合的关系、一元二次不等式与一元二次等式的关系,属于基础题19、(1)(2)【解析】【试题分析】(1)设所求直线方程为:,将点坐标代入,求得的值,即得所求.(2)求得中点坐标和直线交点的坐标,利用点斜式得到所求直线方程.【试题解析】(1)设与:平行的直线方程为:,将代入,得,解得,故所求直线方程是:(2)∵,,∴线段的中点是,设两直线的交点为,联立解得交点,则,故所求直线的方程为:,即20、(1)99;(2)2.【解析】(1)根据指数幂的运算公式将式子进行化简求值即可;(2)对式子提公因式,结合同底的对数运算得到最终结果解析:(1)原式(2)原式21、(1)证明见解析(2)【解析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省2026届生物高三第一学期期末达标检测模拟试题含解析
- 2026届甘肃省宁县高二上数学期末学业质量监测试题含解析
- 2026届甘肃省兰州市二十七中生物高一第一学期期末考试试题含解析
- 心血管事件预警:动态生物标志物实时监测
- 心脏移植术后心衰的CRT治疗策略优化
- 心脏破裂患者术前凝血功能异常的纠正策略
- 心脏淀粉样病患者数据隐私保护策略
- 心肌细胞再生的干细胞替代策略
- 微创手术治疗脊髓硬脊膜动静脉畸形
- 微创引流技术对术后患者满意度的影响
- 断绝母女关系的协议书
- 四年级上册语文1-27课必背知识
- 2025年考研马克思主义理论马克思主义基本原理试卷(含答案)
- 软件项目开发需求文档范例
- 儿童静脉血栓栓塞症抗凝药物治疗专家共识(2025)解读 2
- 2025-2026学年统编版小学语文四年级上册期末考试测试卷及参考答案
- 湖北省武汉市经开区2024-2025学年七年级上学期期末道德与法治试卷(含答案)
- 注射用硝普钠临床应用考核试题
- 国际贸易UCP600条款中英文对照版
- (正式版)DB15∕T 3463-2024 《双炉连续炼铜工艺技术规范》
- 【中国信通院】2025年软件工程智能化标准体系建设指南
评论
0/150
提交评论