版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省平凉市静宁县一中2026届高二上数学期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.2.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.3.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)4.函数在区间上平均变化率等于()A. B.C. D.5.已知数列的前n项和为,,,则()A. B.C. D.6.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.7.若命题“对任意,使得成立”是真命题,则实数a的取值范围是()A. B.C. D.8.椭圆的离心率为()A B.C. D.9.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④10.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.412.以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在上是增函数,则实数的取值范围是________14.曲线在点处的切线的方程为__________.15.已知抛物线上一点到其焦点的距离为10.抛物线的方程为_____________;准线方程为_______16.如图是一个边长为2的正方体的平面展开图,在这个正方体中,则下列说法中正确的序号是___________.①直线与直线垂直;②直线与直线相交;③直线与直线平行;④直线与直线异面;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程18.(12分)如图,在四棱锥中,平面,四边形是菱形,,,是的中点(1)求证:;(2)已知二面角的余弦值为,求与平面所成角的正弦值19.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.20.(12分)已知点,(1)若过点P作的切线只有一条,求实数的值及切线方程;(2)过点P作斜率为1的直线l与相交于M,N两点,当面积最大时,求实数的值21.(12分)已知函数.(1)讨论的单调性;(2)任意,恒成立,求的取值范围.22.(10分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B2、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题3、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题4、C【解析】根据平均变化率的定义算出答案即可.【详解】函数在区间上的平均变化率等于故选:C5、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D6、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.7、A【解析】由题得对任意恒成立,求出的最大值即可.【详解】解:由题得对任意恒成立,(当且仅当时等号成立)所以故选:A8、D【解析】根据椭圆方程先写出标准方程,然后根据标准方程写出便可得到离心率.【详解】解:由题意得:,,故选:D9、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B10、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键11、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B12、C【解析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值14、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:15、①.②.【解析】由题意得:抛物线焦点为F(0,),准线方程为y=﹣.因为点到其焦点的距离为10,所以根据抛物线的定义得到方程,得到该抛物线的准线方程【详解】∵抛物线方程∴抛物线焦点为F(0,),准线方程为y=﹣,又∵点到其焦点的距离为10,∴根据抛物线的定义,得9+=10,∴p=2,抛物线∴准线方程为故答案为:,.16、①④【解析】画出正方体,,,故,①正确,根据相交推出矛盾得到②错误,根据,与相交得到③错误,排除共面的情况得到④正确,得到答案.【详解】如图所示的正方体中,,,故,①正确;若直线与直线相交,则四点共面,即在平面内,不成立,②错误;,与相交,故直线与直线不平行,③错误;,与不平行,故与不平行,若与相交,则四点共面,在平面内,不成立,故直线与直线异面,④正确;故答案为:①④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)设出,表达出,直接法求出轨迹方程;(2)在第一问的基础上,先考虑直线斜率不存在时是否符合要求,再考虑斜率存在时,设出直线方程,表达出圆心到直线的距离,利用垂径定理列出方程,求出直线方程.【小问1详解】设,则,,故,两边平方得:【小问2详解】当直线斜率不存在时,直线为,此时弦长为,满足题意;当直线斜率存在时,设直线,则圆心到直线距离为,由垂径定理得:,解得:,此时直线的方程为,综上:直线的方程为或.18、(1)证明见解析;(2).【解析】(1)由菱形及线面垂直的性质可得、,再根据线面垂直的判定、性质即可证结论.(2)构建空间直角坐标系,设,结合已知确定相关点坐标,进而求面、面的法向量,结合已知二面角的余弦值求出参数t,再根据空间向量夹角的坐标表示求与平面所成角的正弦值【小问1详解】由平面,平面,则,又是菱形,则,又,所以平面,平面所以E.【小问2详解】分别以,,为,,轴正方向建立空间直角坐标系,设,则,由(1)知:平面的法向量为,令面的法向量为,则,令,可得,因为二面角的余弦值为,则,可得,则,设与平面所成的角为,又,,所以.19、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.20、(1);当时,切线方程为;当时,切线方程为;(2)或【解析】(1)根据题意可知P在圆上,据此即可求t和切线方程;(2)的面积,则当面积最大时,.即,据此即可求出圆心O到直线l的距离,即可求出t的数值.【小问1详解】由题意得点在上,∴,,①当时,切点,直线OP的斜率,切线斜率,切线方程为,即②当时,切点,直线OP的斜率,切线斜率,切线方程,即【小问2详解】∵的面积,则当面积最大时,.即,则圆心O到直线l距离又直线,即,则,解之得或注:亦可设圆心O到直线l的距离为d,则的面积,当且仅当,即时取等号(下同)21、(1)的递增区间为,递减区间为(2)【解析】(1)先求出函数的导数,令、解出对应的解集,结合定义域即可得到函数的单调区间;(2)将不等式转化为,令,利用导数讨论函数分别在、时的单调性,进而求出函数的最值,即可得出答案.【小问1详解】函数的定义域为,又当时,,当时,故的递增区间为,递减区间为.【小问2详解】,即,令,有,,若,在上恒成立.则在上为减函数,所以有若,由,可得,则在上增,所以在上存在使得,与题意不符合综上所述,.22、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年兰州外语职业学院单招(计算机)考试备考题库附答案
- 2026年时事政治测试题库及答案参考
- 2026年低压电工操作证理论全国考试题库含答案【突破训练】
- 2026年书记员考试题库及答案【易错题】
- 2026年毛概期末考试试题库(培优)
- 2025年明达职业技术学院单招(计算机)考试备考题库附答案
- 广东公务员考试面试方式试题及答案
- 2026年交管12123驾照学法减分题库含答案【考试直接用】
- 2026年口腔正畸学考试题库(黄金题型)
- 工业机器人在食品包装生产线的卫生标准调研
- 沐足行业严禁黄赌毒承诺书1
- 大国三农-辉煌成就版智慧树知到期末考试答案章节答案2024年中国农业大学
- 小学三年级综合实践课课件(共10张课件)
- 嵌入式软件概要设计说明书
- NY525-2021有机肥标准-文档
- 大理大学2023年数据库期末题库及答案
- 公路工程重大危险源管理方案
- 铅锌矿的选矿工厂自动化控制技术
- 《档案利用与服务》课件
- 基础拓扑学讲义答案尤承业
- 单位工程施工组织设计的编制1概述2工程概况与施工特点分析
评论
0/150
提交评论