2026届广东省深圳四校发展联盟体数学高一上期末达标检测试题含解析_第1页
2026届广东省深圳四校发展联盟体数学高一上期末达标检测试题含解析_第2页
2026届广东省深圳四校发展联盟体数学高一上期末达标检测试题含解析_第3页
2026届广东省深圳四校发展联盟体数学高一上期末达标检测试题含解析_第4页
2026届广东省深圳四校发展联盟体数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省深圳四校发展联盟体数学高一上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.如图,网格纸上小正方形的边长为,粗实线画出的是某“堑堵”的三视图,则该“堑堵”的侧面积为()A.48 B.42C.36 D.302.一个球的内接正方体的表面积为54,则球的表面积为()A. B.C. D.3.已知,,,则,,大小关系为()A. B.C. D.4.半径为,圆心角为的弧长为()A. B.C. D.5.函数单调递增区间为A. B.C. D.6.定义:对于一个定义域为的函数,若存在两条距离为的直线和,使得时,恒有,则称在内有一个宽度为的通道.下列函数:①;②;③;④.其中有一个宽度为2的通道的函数的序号为A.①② B.②③C.②④ D.②③④7.下列四组函数中,表示同一函数的一组是()A. B.C. D.8.sin()=()A. B.C. D.9.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.10.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的半径为2,面积为,则该扇形的圆心角的弧度数为______.12.当时,函数取得最大值,则_______________13.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________14.已知直线与圆相切,则的值为________15.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______16.已知,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,若同时满足以下条件:①在D上单调递减或单调递增;②存在区间,使在上的值域是,那么称为闭函数(1)求闭函数符合条件②的区间;(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;(3)若是闭函数,求实数的取值范围18.设函数,其中.(1)求函数的值域;(2)若,讨论在区间上的单调性;(3)若在区间上为增函数,求的最大值.19.设函数f(x)=k⋅2x-(1)求k的值;(2)若不等式f(x)>a⋅2x-1(3)设g(x)=4x+4-x-4f(x),求20.已知函数.(1)求函数的最小正周期及对称轴方程;(2)若,求的值.21.设集合,语句,语句.(1)当时,求集合与集合的交集;(2)若是的必要不充分条件,求正实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由三视图可知该“堑堵”的高为,其底面是直角边为,斜边为的三角形,从而可求出其侧面积.【详解】解:由三视图易得该“堑堵”的高为,其底面是直角边为,斜边为的三角形,故其侧面积为.故选:C.2、A【解析】球的内接正方体的对角线就是球的直径,正方体的棱长为a,球的半径为r,则,求出正方体棱长,再求球半径即可【详解】解:设正方体的棱长为a,球的半径为r,则,所以又因所以所以故选:A【点睛】考查球内接正方体棱长和球半径的关系以及球表面积的求法,基础题.3、C【解析】由对数的性质,分别确定的大致范围,即可得出结果.【详解】因为,所以,,所以,,,所以.故选:C.4、D【解析】利用弧长公式即可得出【详解】解:,弧长cm故选:D5、A【解析】,所以.故选A6、D【解析】②③可由作图所得,④作图可知有一个宽度为1的通道,由定义可知比1大的通道都存在.7、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:8、A【解析】直接利用诱导公式计算得到答案.【详解】故选:【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.9、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.10、A【解析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【点睛】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由扇形的面积公式和弧度制的定义,即可得出结果.【详解】由扇形的面积公式可得,所以圆心角为.故答案为:12、【解析】利用三角恒等变换化简函数,根据正弦型函数的最值解得,利用诱导公式求解即可.【详解】解析:当时,取得最大值(其中),∴,即,∴故答案为:-3.13、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为14、2【解析】直线与圆相切,圆心到直线的距离等于半径,列出方程即可求解的值【详解】依题意得,直线与圆相切所以,即,解得:,又,故答案为:215、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题16、【解析】由已知先求得,再求得,代入可得所需求的函数值.【详解】由已知得,即,所以,而,故答案为.【点睛】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)见解析;(3)【解析】(1)由在R上单减,列出方程组,即可求的值;(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围【详解】解:(1)∵在R上单减,所以区间[a,b]满足,解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则,即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个交点故不存在满足条件的区间[a,b],函数y=2x+lgx是不是闭函数(3)易知在[﹣2,+∞)上单调递增设满足条件B的区间为[a,b],则方程组有解,方程至少有两个不同的解即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根∴得,即所求【点睛】本题主要考查了函数的单调性的综合应用,函数与方程的综合应用问题,其中解答中根据函数与方程的交点相互转化关系,合理转化为二次函数的图象与性质的应用是解答的关键,着重考查了函数知识及数形结合思想的应用,以及转化思想的应用,试题有较强的综合性,属于难题.18、(1)(2)在区间上单调递增,在上单调递减(3)【解析】(1)首先化简函数,再求函数的值域;(2)利用代入法,求的范围,再结合函数的性质,即可求解函数的单调性;(3)由(1)可知,,首先求的范围,再根据函数的单调区间,求的最大值.【小问1详解】,所以函数的值域是;【小问2详解】时,,当,,当,即时,函数单调递增,当,即时,函数单调递减,所以函数的单调递增区间是,函数的单调递减区间是;【小问3详解】若,则,若函数在区间上为增函数,则,解得:,所以的最大值是.19、(1)1;(2)a<54;(3)最小值-2,此时x=【解析】(1)根据题意可得f0=0,即可求得(2)f(x)>a⋅2x-1(3)由题意g(x)=4x+4-x-42x-【详解】(1)因为f(x)=k⋅2x-所以f0=0,所以k-1=0,解得所以f(x)=2当k=1时,f(-x)=2所以fx为奇函数,故k=1(2)f(x)>a⋅2x-1所以只需a<-因为-12x所以a<5(3)因为g(x)=4x+可令t=2x-2-x,可得函数t则t2=4x+由ht为开口向上,对称轴为t=2>所以t=2时,ht取得最小值-2此时2=2x-所以gx在1,+∞上的最小值为-2,此时【点睛】解题的关键熟练掌握二次函数的图象与性质,并灵活应用,处理存在性问题时,若a<m(x),只需a<m(x)max,若a>m(x),只需a>m(x)min,处理恒成立问题时,若a<m(x),只需a<m(x)20、(1)周期,对称轴;(2)【解析】(1)化简函数,根据正弦函数的性质得到函数的最小正周期及对称轴方程;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论