版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省攀枝花市属高中高三上数学期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为()A. B. C. D.2.已知为实数集,,,则()A. B. C. D.3.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.104.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.65.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i6.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.97.已知函数,若,使得,则实数的取值范围是()A. B.C. D.8.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A. B. C. D.9.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.64210.函数()的图象的大致形状是()A. B. C. D.11.已知复数,其中,,是虚数单位,则()A. B. C. D.12.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,,记和的面积分别为,,则______.14.在中,已知,,是边的垂直平分线上的一点,则__________.15.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.16.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.18.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.19.(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.20.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.21.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.22.(10分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.2、C【解析】
求出集合,,,由此能求出.【详解】为实数集,,,或,.故选:.【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.3、C【解析】
取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.4、D【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.5、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.6、A【解析】
先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.7、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.8、A【解析】
列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.9、A【解析】
设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c10、C【解析】
对x分类讨论,去掉绝对值,即可作出图象.【详解】故选C.【点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.11、D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.12、C【解析】
根据函数奇偶性的性质即可得到结论.【详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可.【详解】因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称,所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程消y得,解得,故B的横坐标为,又B、D中点是E,所以D的横坐标为,故.故答案为:.【点睛】本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴填空题.14、【解析】
作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,,,.故答案为:.【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.15、60【解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.16、135【解析】
根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.【详解】根据题意先确定2个人位置不变,共有种选择.再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,故不同的坐法有.故答案为:.【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值为.当且仅当,,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.18、(1),(2)【解析】
(1)利用互化公式把曲线C化成直角坐标方程,把点P的极坐标化成直角坐标;(2)把直线l的参数方程的标准形式代入曲线C的直角坐标方程,根据韦达定理以及参数t的几何意义可得.【详解】(1)由ρ2得ρ2+ρ2sin2θ=2,将ρ2=x2+y2,y=ρsinθ代入上式并整理得曲线C的直角坐标方程为y2=1,设点P的直角坐标为(x,y),因为P的极坐标为(,),所以x=ρcosθcos1,y=ρsinθsin1,所以点P的直角坐标为(1,1).(2)将代入y2=1,并整理得41t2+110t+25=0,因为△=1102﹣4×41×25=8000>0,故可设方程的两根为t1,t2,则t1,t2为A,B对应的参数,且t1+t2,依题意,点M对应的参数为,所以|PM|=||.【点睛】本题考查了简单曲线的极坐标方程,属中档题.19、(1)(2);时,取得最小值【解析】
(1)设等差数列的公差为,由,结合已知,联立方程组,即可求得答案.(2)由(1)知,故可得,即可求得答案.【详解】(1)设等差数列的公差为,由及,得解得数列的通项公式为(2)由(1)知时,取得最小值.【点睛】本题解题关键是掌握等差数列通项公式和前项和公式,考查了分析能力和计算能力,属于基础题.20、(1).(2).【解析】分析:(1)直接建立空间直角坐标系,然后求出面的法向量和已知线的向量,再结合向量的夹角公式求解即可;(2)先分别得出两个面的法向量,然后根据向量交角公式求解即可.详解:()∵是矩形,∴,又∵平面,∴,,即,,两两垂直,∴以为原点,,,分别为轴,轴,轴建立如图空间直角坐标系,由,,得,,,,,,则,,,设平面的一个法向量为,则,即,令,得,,∴,∴,故与平面所成角的正弦值为.()由()可得,设平面的一个法向量为,则,即,令,得,,∴,∴,故二面角的余弦值为.点睛:考查空间立体几何的线面角,二面角问题,一般直接建立坐标系,结合向量夹角公式求解即可,但要注意坐标的正确性,坐标错则结果必错,务必细心,属于中档题.21、(Ⅰ);(Ⅱ)面积的最小值为9,.【解析】
(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河北工业职业技术大学单招综合素质笔试参考题库附答案详解
- 2026年菏泽家政职业学院单招综合素质笔试参考题库附答案详解
- 2026年绵阳城市学院单招综合素质考试备考题库附答案详解
- 2026年哈尔滨信息工程学院单招综合素质笔试参考题库附答案详解
- 2026年湖南工业职业技术学院单招综合素质考试模拟试题附答案详解
- 2026年河源职业技术学院单招综合素质考试模拟试题附答案详解
- 河北省邢台市部分学校2025-2026学年高一上学期1月月考化学试题含答案
- 2024年贵州交通职业大学马克思主义基本原理概论期末考试笔试题库
- 2025年江阴职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2025年湖南都市职业学院马克思主义基本原理概论期末考试参考题库
- 2025至2030中国细胞存储行业调研及市场前景预测评估报告
- GB/T 1962.1-2015注射器、注射针及其他医疗器械6%(鲁尔)圆锥接头第1部分:通用要求
- GB/T 1041-2008塑料压缩性能的测定
- GA/T 527.1-2015道路交通信号控制方式第1部分:通用技术条件
- 北京市西城区2021-2022学年第一学期期末初三物理试题及答案(PDF版)
- 室内精装修分包工程策划汇报课件
- 申论答题卡word模板
- 红色绘本小故事爱国教育-长征路上的红小丫课件
- 桩基础负摩阻计算表格(自动版)
- T-CCMI 20-2022 乘用车发动机曲轴锻造毛坯件 技术条件
- 九年级上英语复习句型转换
评论
0/150
提交评论