版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北武汉武昌区武汉大学附属中学高一数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线和直线的距离是A. B.C. D.2.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个3.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.4.已知,现要将两个数交换,使,下面语句正确的是A. B.C. D.5.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④6.用样本估计总体,下列说法正确的是A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本的标准差可以近似地反映总体的平均状态D.数据的方差越大,说明数据越稳定7.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.8.幂函数的图象经过点,则()A.是偶函数,且在上单调递增B.是偶函数,且在上单调递减C.是奇函数,且在上单调递减D.既不是奇函数,也不是偶函数,在上单调递增9.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.10.有一组实验数据如下现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最佳的一个是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则______.12.已知集合M={3,m+1},4∈M,则实数m的值为______13.函数的图象恒过定点,点在幂函数的图象上,则=____________14.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________15.已知函数,则使不等式成立的的取值范围是_______________16.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB相交,则l的斜率k的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.18.如图,在中,斜边,,在以为直径的半圆上有一点(不含端点),,设的面积,的面积.(1)若,求;(2)令,求的最大值及此时的.19.已知函数.(1)判断并证明的奇偶性;(2)若,求的取值范围.20.求经过点和,圆心在轴上的圆的方程.21.已知cos(−α)=,sin(+β)=−,α(,),β(,).(1)求sin2α的值;(2)求cos(α+β)的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为直线即,故两条平行直线和的距离故选A2、B【解析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【点睛】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题3、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A4、D【解析】通过赋值语句,可得,故选D.5、A【解析】依次判断四种变换方式的结果是否符合题意,选出正确变换【详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【点睛】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上6、B【解析】解:因为用样本估计总体时,样本容量越大,估计就越精确,成立选项A显然不成立,选项C中,样本的标准差可以近似地反映总体的稳定状态,、数据的方差越大,说明数据越不稳定,故选B7、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A8、D【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案.【详解】设幂函数的解析式为:,将代入解析式得:,解得,所以幂函数,所以既不是奇函数,也不是偶函数,且,所以在上单调递增.故选:D.9、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积10、C【解析】选代入四个选项的解析式中选取所得的最接近的解析式即可.【详解】对于选项A:当时,,与相差较多,当时,,与相差较多,故选项A不正确;对于选项B:当时,,与相差较多,当时,,与相差较多,故选项B不正确;对于选项C:当时,,当时,,故选项C正确;对于选项D:当时,,与相差较多,当时,,与相差较多,故选项D不正确;故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【详解】由得,即,解得故答案为:12、3【解析】∵集合M={3,m+1},4∈M,∴4=m+1,解得m=3故答案为3.13、【解析】因为函数图象恒过定点,则可之令2x-3=1,x=2,函数值为4,故过定点(2,4),然后根据且点在幂函数的图象上,设,故可知=9,故答案为9.考点:对数函数点评:本题考查了对数函数图象过定点(1,0),即令真数为1求对应的x和y,则是所求函数过定点的坐标14、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:15、【解析】由奇偶性定义可判断出为偶函数,结合复合函数单调性的判断可得到在上单调递增,由偶函数性质知其在上单调递减,利用函数单调性解不等式即可求得结果.【详解】由,解得:或,故函数的定义域为,又,为上的偶函数;当时,单调递增,设,,在上单调递增,在上单调递增,在上单调递增,又为偶函数,在上单调递减;由可知,解得.故答案为:.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.16、k≥或k≤-4【解析】算出直线PA、PB的斜率,并根据斜率变化的过程中求得斜率的取值范围详解】直线PA的斜率为,同理可得PB的斜率为直线过点且与AB相交直线的斜率取值范围是k≥或k≤-4故答案为k≥或k≤-4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂.18、(1);(2),有最大值.【解析】由已知可得,.(1)根据解可得答案;(2)由化简为,根据的范围可得答案.【详解】因为中,,,所以,,.又因为为以为直径的半圆上一点,所以.在中,,,.作于点,则,,(1)若,则,因为,所以,所以,整理得,所以,.(2)因为,所以,当时,即,有最大值.【点睛】本题考查了三角函数的性质和解三角形,关键点是利用已知得到,,正确的利用两角和与差的正弦公式得到函数表达式的形式,考查了运算能力.19、(1)是奇函数,证明见解析(2)【解析】(1)先求函数的定义域,再利用奇偶性的定义进行判定;(2)先解关于的一元二次不等式得到,再利用对数函数的单调性转化为分式不等式进行求解.【小问1详解】解:是奇函数,证明如下:令,即,解得,即的定义域为;对于任意,都有,且,即,所以是奇函数.【小问2详解】解:因为,所以,则,即,所以,因为,所以,所以可化为,解得,即的取值范围为.20、.【解析】根据条件得到,设圆心为,根据点点距列出式子即可,求得参数值解析:圆的圆心在轴上,设圆心为,由圆过点和,由可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全员安全再教育培训心得课件
- 养育女孩沟通指南
- 辅导机构消防安全自查手册
- 科技引领安全生产讲解
- 香云纱产品话术
- 商品企划面试全攻略
- 光纤入户培训
- 创新营销话术技巧
- 2025-2026学年教科版高二物理上学期期末常考题之环境保护与可持续发展
- 2025-2026学年统编版九年级语文上册考点梳理
- 喷绘安装合同范本
- 2025年区块链技术化妆品溯源发展报告
- 福建厦门大学教育研究院行政秘书招聘笔试真题2024
- 全反力、摩擦角、自锁现象、辅助角-习题答案
- 2026年湖南食品药品职业学院单招职业适应性测试题库带答案详解
- 《AQ 4272-2025铝镁制品机械加工粉尘防爆安全规范》专题研究报告
- 2025年度威海文旅发展集团有限公司招聘工作人员25人笔试参考题库附带答案详解(3卷)
- T-CNHC 4-2025 昌宁县低质低效茶园改造技术规程
- 2025年手术室护理实践指南试题(含答案)
- 黑龙江省哈尔滨市南岗区2024-2025学年(五四制)六年级上学期期末语文试题
- 2025年山东省政府采购专家入库考试真题(附答案)
评论
0/150
提交评论