概率统计知识点_第1页
概率统计知识点_第2页
概率统计知识点_第3页
概率统计知识点_第4页
概率统计知识点_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率统计知识点汇总

1.分类加法计数原理

完成一件事有n类不同的方案,在第一类方案中有nl种不同的方法,在第二类方案中有m2

种不同的方法,……,在第n类方案中有皿)种不同的方法,则完成这件事情,共有N=nil+

m2+…+mn种不同的方法.

2.分步乘法计数原理

完成一件事情需要分成n个不同的步骤,完成第一步有ml种不同的方法,完成第二步有m2

种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N=mlXm2

X…Xmn种不同的方法.

3.两个原理的区别

分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数,它们的区

别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完

成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这

件事才算完成.

4.排列与排列数公式

(1)排列与排列数

所有不同排

排列的个数数

(2)排列数公式

状=H〃-1)(〃-2)…(〃一9+1)=

(3)排列数的性质

①A=n!;②0!=1.

5.组合与组合数公式

(1)组合与组合数

(2)组合数公式

〃•-2…〃一皿+1〃!

=m\a!n-m!

(3)组合数的性质

@cS=i;©a=cr>;©c:+cr^c^i.

6.排

列与

组合

问题

识别方法

的识

别方

若交换某两个元素的位置对结果产生影响,则是排列

排列问题,即排列问题与选取元素顺序有关

若交换某两个元素的位置对结果没有影响,则是组合

组合问题,即组合问题与选取元素顺序无关

7,二项式定理

(1)定理:

(a+b)n=Can+Can—lb+…+Can—kbkd---hCbn(n^N*).

(2)通项:

第k+1项为:Tk+l=Can-kbk.

(3)二项式系数:

二项展开式中各项的二项式系数为:C(k=0,l,2,…,n).

8.二项式系数的性质

9.概率与频率

(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的

次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.

(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某

个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并

把这个常数称为随机事件A的概率,记作P(A).

10.事件的

关系与运算定义符号表示

如果事件A发生,则事件B一定发生,这时称事件B

包含卓

包含事件A(或称事件A包含于事件B)

关系(或力⑶

相等若B3A且A3B,那么称事件A与事件B相等

A=B

关系

若某事件发生当且仅当事件A发生或事件B发生,则

并事件AUB

称此事件为事件A与事件B的并事件(或和事件)

(和事件)(或A+B)

若某事件发生当且仅当事件A发生且事件B发生,则

交事件ADB

称此事件为事件A与事件B的交事件(或积事件)

(积事件)(或AB)

互斥若ACB为不可能事件,则称事件A与事件B互承

AdB=0

事件

若ACB为不可能事件,AUB为必然事件,那么称事AdB=0:

对立

件A与事件B互为对立事件P(AUB)=P(A)+P(B)

事件

=1

11.理解事件中常见词语的含义:

(DA,B中至少有个发生的事件为AUB;

(2)A,B都发生的事件为AB;

(3)A,B都不发生的事件为;

(4)A,B恰有一个发生的事件为AUB;

(5)A,B至多一个发生的事件为AUBU.

12.概率的几个基本性质

(1)概率的取值范围:OWP(A)W1.

(2)必然事件的概率:P(E)=L

(3)不可能事件的概率:P(F)=O.

(4)概率的加法公式:如果事件A与事件B互斥,则P(AUB)=P(A)+P(B).

(5)对立事件的概率

若事件A与事件B互为对立事件,则P(A)=1-P(B).

13.互斥事件与对立事件的区别与联系

互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立

事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是

互斥事件的特殊情况,而互斥事件未必是对立事件.

14.基本事件的特点

(1)任意两个基本事件是互斥的.

(2)任何事件(除不可能事件)都可以表示成基本事件的和.

15.古典概型

(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.

①试验中所有可能出现的基本事件只有有限个.

②每个基本事件出现的可能性相等.

(2)古典概型的概率公式:P(A)=.

16.几何概型

(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称

这样的概率模型为几何概率模型,简称几何概型.

(2)几何概型的概率公式:P(A)=.

17.条件概率及其性质

(1)对于任何两个事件A和B,在己知事件A发生的条件下,事件B发生的概率叫做条件概率,

用符号P(B|A)来表示,其公式为P(B|A)==.

(2)条件概率具有的性质:

①OW/W)W1;

②如果B和C是两个互斥事件,则P(BUC|A)=P(B|A)+P(C|A).

18.相互独立事件

(1)对于事件A.B,若A的发生与B的发生互不影响,则称A.B是相互独立事件.

(2)若A与B相互独立,则P(B|A)=P(B),

P(AB)=P(B/A)P(A)=P(A)P(B).

(3)若A与B相互独立,则A与,与B,与也都相互独立.

(4)若P(AB)=P(A)P(B),则A与B相互独立.

19.离散型随机变量

随着试验结果变化血变化的变量称为随机变量,常用字母X,Y,3%…表示.所有取值

可以一一列出的随机变量,称为离散型随机变量.

20.离散型随机变量的分布列及其性质

(1)

一般

地,

若离

散型

随机

变量

X可

Xi.・♦♦Xi♦♦・Xn

能取

的不

同值

xl,

x2,

•••

>

xi,

•••

>

xn,X

取每

一个

xi(i

1,2,

•••

n)的

概率

P(X

xi)

pi,

则表

X

•••♦••

PPiA

称为离散型随机变量X的概率分布列.

(2)离散型随机变量的分布列的性质:

@pi20(i=l,2,…,n);②pi=l.

21.常见离散型随机变量的分布列

(1)两点分布:

若随

机变

IX

服从

两点01

布,

则其

分布

列为

X

P1-PP

其中p=P(X=l)称为成功概率.

(2)超几何分布

有M

的N

中,

任01•••m

取n

件,

有X

品,

{X

k)

PCX

k)

,k

0,1

,2,

中m

min

{M,

n),

且n

W

N,M

W

N,

n,

M,N

e

N*,

列.

X

/MJ-

•••

P00rg

L#L.v-#

CN~~CT~

(3)二项分布

①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试

验中每一次试验只有两种结果,即要么发生,要么不发生,目任何一次试验中发生的概率都

是一样的.

②在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为

P,则P(X=k)=Cpk(l-p)n—k(k=0,l,2,…,n),此时称随机变量X服从二项分布,记为

X〜B(n,p),并称p为成功概率.

22.离散型随机变量的均值与方差

若离散型随机变量/的分布列为

XXiXi••♦Xi•••Xn

•••»••

pPPPia

<1>均值:称E(X)=xlpl+x2P2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它

反映了离散型随机变量取值的平均水平.

<2>方差:称D(X)=(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)

的平均偏离程度,其算术平方根为随机变量X的标准差.

<3>均值与方差的性质

(a,b为常数).

<4>两点分布与二项分布的均值、方差

X~B(n,p)

才服从两点分布

双0为成功概率)np

XI-P)np{\-p)

23.正态曲线的特点

(1)曲线位于x轴上方,与x轴不相交;

(2)曲线是单峰的,它关于直线x=u对称;

(3)曲线在尸4级达到峰值一75=;

(4)曲线与x轴之间的面积为1;

(5)当。一定时,曲线随着口的变化而沿x轴平移;

(6)当A一定时,曲线的形状由。确定.。越小,曲线越“瘦高”,表示总体的分布越集中;

。越大,曲线越“矮胖”,表示总体的分布越分散.

(7)正态分布的三个常用数据(不需记忆)

①人〃一"层"+")=(].6826;

②人4-2。<辰〃+267)=0.9544;

③辰4+3。)=0.9974.

24.简单随机抽样

(1)定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(nW

N),且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样.

(2)常用方法:抽签法和随机数表法.

25.系统抽样

(1)步骤:①先将总体的N个个体编号;

②根据样本容量n,当是整数时,取分段间隔k=;

③在第1段用简单桃机抽样确定第一个个体编号/(/WA);

④按照一定的规则抽取样本.

(2)适用范围:适用于总体中的个体数较多时.

26.分层抽样

(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取

一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.

(2)适用范围:适用于总体由差异比较明显的几个部分组成时.

27.三种

抽样方法

各自特点、相互联系适用范围共同点

的比较

类别

简单植机从总体中总体中的个体

最基本的抽样方法

抽样逐个抽取数校少

将总体平均分成几部在起始部分抽样抽样过程

系统分,按事先确定的规则时,采用简单随机总体中的个体中每个个

抽样分别在各部分中抽取抽样数较多体被抽到

的可能性

将总体分成几层,按各各层抽样时采用简总体由差异明相等

分层

层个体单随机抽样或系统显的几部分组

抽样

数之比抽取抽样成

28.作频率分布直方图的步骤

(1)求极差(即一组数据中最大值与最小值的差).

(2)决定组距与组数.

(3)将数据分组.

(4)列频率分布表.

(5)画频率分布直方图.

29.频率分布折线图和总体密度曲线

(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线

图.

(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率

折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.

30.茎叶图

统计中还有一种被用来表示数据的图叫做茎叶图,茎是指的一列数,叶是从茎的旁边

生长出来的数.

31.样本的数字特征

(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.

(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位

数.

(3)平均数:把称为al,a2,…,an这n个数的平均数.

(4)标准差与方差:设一组数据Xi,x2,x3,…,xn的平均数为,则这组数据

标准差为S=Ai-X'Xi-X---------FX彳

方差为[(方一X)Z+(A2-X)2d-------F(x,-X)2]

32.变量间的相关关系

(1)常见的两变量之间的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论