版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省南安一中高二上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.12.关于的不等式的解集为,则关于的不等式的解集为A. B.C. D.3.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.4.如下图,面与面所成二面角的大小为,且A,B为其棱上两点.直线AC,BD分别在这个二面角的两个半平面中,且都垂直于AB,已知,,,则()A. B.C. D.5.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.6.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.97.若函数在区间内存在最大值,则实数的取值范围是()A. B.C. D.8.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.9.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.10.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.211.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.12.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.二、填空题:本题共4小题,每小题5分,共20分。13.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).14.如图所示四棱锥,底面ABCD为直角梯形,,,,,是底面ABCD内一点(含边界),平面MBD,则点O轨迹的长度为_____________.15.圆心为直线与直线的交点,且过原点的圆的标准方程是________16.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.18.(12分)如图1是,,,,分别是边,上两点,且,将沿折起使得,如图2.(1)证明:图2中,平面;(2)图2中,求二面角的正切值.19.(12分)已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由20.(12分)命题p:直线l:与圆C:有公共点,命题q:双曲线的离心率(1)若p,q均为真命题,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围21.(12分)已知:对任意,都有;:存在,使得(1)若“且”为真,求实数的取值范围;(2)若“或”为真,“且”为假,求实数的取值范围22.(10分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题2、B【解析】设,解集为所以二次函数图像开口向下,且与交点为,由韦达定理得所以的解集为,故选B.3、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.4、B【解析】根据题意,作,且,则四边形ABDE为平行四边形,进一步判断出该四边形为矩形,然后确定出为二面角的平面角,进而通过余弦定理和勾股定理求得答案.【详解】如图,作,且,则四边形ABDE为平行四边形,所以.因为,所以,又,所以是该二面角的一个平面角,即,由余弦定理.因为,,所以,易得四边形ABDE为矩形,则,而,所以平面ACE,则,于是.故选:B.5、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.6、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B7、A【解析】利用函数的导数,求解函数的极值,推出最大值,然后转化列出不等式组求解的范围即可【详解】,或,∴在单调递减,在单调递增,在单调递减,∴f(x)有极大值,要使f(x)在上有最大值,则极大值3即为该最大值,则,又或,∴,综上,.故选:A.8、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D9、C【解析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C10、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A11、C【解析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.12、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想二、填空题:本题共4小题,每小题5分,共20分。13、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.14、【解析】绘出如图所示的辅助线,然后通过平面平面得出点轨迹为线段,最后通过求出、的长度即可得出结果.【详解】如图,延长到点,使且,连接,取上点,使得,作,交于点,交于点,连接,因为,所以,因为,又,所以,,因为,,,所以平面平面,因为平面,面,所以点轨迹为线段,因为,,所以,因为,,,所以,因为底面为直角梯形,所以,,,,故答案为:.15、【解析】由,求得圆心,再根据圆过原点,求得半径即可.【详解】由,可得,即圆心为,又圆过原点,所以圆的半径,故圆的标准方程为故答案为:【点睛】本题主要考查圆的方程的求法,属于基础题.16、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由(1)得,当,3,6时为有理项,故有理有,,.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.18、(1)证明见解析(2)【解析】(1)、利用线面垂直的判定,及线面垂直的性质即可证明;(2)、建立空间直角坐标系,分别求出平面、平面的法向量,利用求出两平面所成角的余弦值,进而求出求二面角的正切值.【小问1详解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小问2详解】由(1)知:平面,以为坐标原点,建立如图所示的空间直角坐标系,则,,,设平面的法向量为,平面的法向量为,则与,即与,..,观察可知二面角为钝二面角,二面角的正切值为.19、(1);(2)是定值,.【解析】(1)根据给定条件探求得,再借助椭圆定义直接求得轨迹的方程.(2)设出直线的方程,再与轨迹的方程联立,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径,因线段的垂直平分线与半径相交于点,则,而,于是得,因此,点的轨迹是以C,A为左右焦点,长轴长为4的椭圆,短半轴长有,所以轨迹的方程为.【小问2详解】依题意,设直线的方程为:,,由消去y并整理得:,,则且,设,则有,,因直线,的斜率,都存在且不为,因此,且,,,所以直线,的斜率,都存在且不为时,是定值,这个定值是.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值20、(1),;(2).【解析】(1)求出,成立的等价条件,即可求实数的取值范围;(2)若“”为假命题,“”为真命题,则、一真一假,当真假时,求出的取值范围,当假真时,求出的取值范围,然后取并集即可得答案【小问1详解】若命题为真命题,则,解得:,若命题为真命题,则且,,解得,∴,均为真命题,实数的取值范围是,;【小问2详解】若为真,为假,则、一真一假;①当真假时,即“”且“或”,则此时的取值范围是;当假真时,即“或”且“”,则此时的取值范围是;综上,的取值范围是21、(1).(2).【解析】(1)由已知得,均为真命题,分别求得为真命题,为真命题时,实数的取值范围,再由集合的交集运算求得答案;(2)由已知得,一真一假,建立不等式组,求解即可.【小问1详解】解:因为“且”为真命题,所以,均为真命题若为真命题,则,解得;若为真命题,则,当且仅当,即时,等号成立,此时故实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物领养机构合同范本
- 房产经营租赁合同范本
- 异型样品打样合同范本
- 家电服务劳动合同范本
- 八年级数学上册导一次函数图像性质教案(2025-2026学年)
- 幼儿园中班雷电安全教案模板五(2025-2026学年)
- 图形的轴对称青岛版数学八年级上册教案(2025-2026学年)
- 五十音图浊音半浊音高中日语新版标准日本语初级上册教案
- 小班数学教案反思认识和许多
- 施工员工作总结试卷教案
- 2026年哈尔滨职业技术学院单招综合素质考试模拟试题附答案详解
- 2025年巨野县高铁北站公开招聘客运服务人员备考题库附答案详解
- 2025年德州乐陵市市属国有企业公开招聘工作人员(6人)备考笔试试题及答案解析
- 2025年1月辽宁省普通高中学业水平合格性考试生物学试卷(含答案)
- 2025消防心理测试题或答案及答案
- 直播心态培训课件
- 四川省泸州市2024-2025学年高二上学期期末统一考试地理试卷(含答案)
- 2026年湖南财经工业职业技术学院单招职业倾向性测试必刷测试卷附答案
- 露天采石场安全培训课件
- 2026新生儿遗传病筛查试剂盒政策支持与市场扩容机会研究报告
- 客户服务价值培训
评论
0/150
提交评论