2026届山东省济南市历城区济南一中数学高二上期末学业水平测试模拟试题含解析_第1页
2026届山东省济南市历城区济南一中数学高二上期末学业水平测试模拟试题含解析_第2页
2026届山东省济南市历城区济南一中数学高二上期末学业水平测试模拟试题含解析_第3页
2026届山东省济南市历城区济南一中数学高二上期末学业水平测试模拟试题含解析_第4页
2026届山东省济南市历城区济南一中数学高二上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省济南市历城区济南一中数学高二上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.2.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.3.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.4.若定义在R上的函数的图象如图所示,为函数的导函数,则不等式的解集为()A. B.C. D.5.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④6.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.7.已知曲线,则“”是“C为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.9.在平面直角坐标系中,直线+的倾斜角是()A. B.C. D.10.甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为()A. B.C. D.11.函数在点处的切线方程的斜率是()A. B.C. D.12.已知等差数列中的、是函数的两个不同的极值点,则的值为()A. B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.动直线,恒过的定点是________14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件15.已知数列an满足,则__________16.若复数满足,则_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知幂函数在上单调递减,函数的定义域为集合A(1)求m的值;(2)当时,的值域为集合B,若是成立的充分不必要条件,求实数的取值范围18.(12分)已知数列的前项和,数列是各项均为正数的等比数列,其中,且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.19.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.20.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值21.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)证明:数列的前项和.22.(10分)2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题2、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.3、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C4、A【解析】由函数单调性得出和的解,然后分类讨论解不等式可得【详解】由图象可知:在为正,在为负,,可化为:或,解得或故选:A5、C【解析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【点睛】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.6、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.7、A【解析】根据充分必要条件的定义,以及双曲线的标准方程进行判断可得选项【详解】解:当时,表示双曲线,当表示双曲线时,则,所以“”是“C为双曲线”的充分不必要条件.故选A8、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.9、B【解析】由直线方程得斜率,从而得倾斜角【详解】由直线方程知直角斜率为,在上正切值为1的角为,即为倾斜角故选:B10、D【解析】利用相互独立事件概率乘法公式直接求解.【详解】甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为.故选:D11、D【解析】求解导函数,再由导数的几何意义得切线的斜率.【详解】求导得,由导数的几何意义得,所以函数在处切线的斜率为.故选:D12、C【解析】对求导,由题设及根与系数关系可得,再根据等差中项的性质求,最后应用对数运算求值即可.【详解】由题设,,由、是的两个不同的极值点,所以,又是等差数列,所以,即,故.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将直线方程转化为,从而可得,即可得到结果.【详解】∵,∴∴,解得:x=2,y=2.即方程(a∈R)所表示的直线恒过定点(2,2)故答案为:14、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.15、2019【解析】将已知化为代入可以左右相消化简,将已知化为,代入可以上下相消化简,再全部代入求解即可.【详解】由知故所以故答案为:201916、【解析】设,则,利用复数相等,求出,的值,结合复数的模长公式进行计算即可【详解】设,则,则由得,即,则,得,则,故答案为【点睛】本题主要考查复数模长的计算,利用待定系数法,结合复数相等求出复数是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据幂函数的定义和单调性求解;(2)利用根式函数的定义域和值域求得集合A,B,再由是A的真子集求解.【小问1详解】解:因为幂函数在上单调递减,所以,解得.【小问2详解】由,得,解得,所以,当时的值域为,所以,因为是成立的充分不必要条件,所以是A的真子集,,解得.18、(1),;(2).【解析】(1)利用求出数列的通项,再求出等比数列的公比即得解;(2)求出,再利用错位相减法求解.【小问1详解】解:,.当时,,适合..设等比数列公比为,,,即,或(舍去),.【小问2详解】解:,,,上述两式相减,得,所以所以.19、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数列求和公式可求得.【小问1详解】解:若选①,,且,故数列是首项为,公比为的等比数列,,故;若选②,,所以,,且,故数列是以为首项,以为公比的等比数列,所以,,故,所以,,故,.【小问2详解】解:由(1)可知,则,所以,.当为偶数时,;当为奇数时,.综上所述,.20、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.21、(1)(2)证明见解析.【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得,即可证得原不等式成立.【小问1详解】解:设等差数列的公差为,则,解得,因此,.【小问2详解】证明:,因此,.故原不等式得证.22、(1)(2)选择方案二更划算【解析】(1)要使方案二比方案一优惠,则需要抽出至少一个红球,求出没有抽出红色小球的概率,再根据对立事件的概率公式即可得出答案;(2)若选择方案一,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论