吉林省长春九台师范高中2026届高一上数学期末学业水平测试模拟试题含解析_第1页
吉林省长春九台师范高中2026届高一上数学期末学业水平测试模拟试题含解析_第2页
吉林省长春九台师范高中2026届高一上数学期末学业水平测试模拟试题含解析_第3页
吉林省长春九台师范高中2026届高一上数学期末学业水平测试模拟试题含解析_第4页
吉林省长春九台师范高中2026届高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春九台师范高中2026届高一上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B.C. D.2.下列指数式与对数式的互化不正确的一组是()A.100=1与lg1=0 B.与C.log39=2与32=9 D.log55=1与51=53.已知函数(,且)的图象恒过点,若角的终边经过点,则的值为()A. B.C. D.4.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.5.已知命题,则为()A. B.C. D.6.函数,的图象形状大致是()A. B.C. D.7.若方程表示圆,则实数的取值范围是A. B.C. D.8.函数图象大致是()A. B.C. D.9.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.10.设,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则____12.已知函数是幂函数,且过点,则___________.13.已知幂函数的图象过点,则________14.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________15.已知角的终边上有一点,则________.16.,的定义域为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,关于的不等式的解集为(1)求;(2)设,若集合中只有两个元素属于集合,求的取值范围18.已知函数(1)证明:函数在上是增函数;(2)求在上的值域19.设函数是增函数,对于任意都有(1)写一个满足条件的;(2)证明是奇函数;(3)解不等式20.判断并证明在的单调性.21.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题,根据向量加减数乘运算得,进而得.【详解】解:因为在“赵爽弦图”中,若,所以,所以,所以,所以.故选:B2、B【解析】根据指数式与对数式的互化逐一判断即可.【详解】A.1对数等于0,即,可得到:100=1与lg1=0;故正确;B.对应的对数式应为,故不正确;C.;故正确,D.很明显log55=1与51=5是正确的;故选:B.【点睛】本题考查指数式与对数式的互化,考查基本分析判断能力,属基础题.3、A【解析】令指数函数的指数为零即可求出指数型函数过定点的坐标,再根据三角函数的定义计算可得;【详解】解:因为函数(,且),令,即时,所以函数恒过定点,又角的终边经过点,所以,故选:A4、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程5、D【解析】由全称命题的否定为存在命题,分析即得解【详解】由题意,命题由全称命题的否定为存在命题,可得:为故选:D6、D【解析】先根据函数奇偶性排除AC,再结合特殊点的函数值排除B.【详解】定义域,且,所以为奇函数,排除AC;又,排除B选项.故选:D7、A【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程8、A【解析】利用函数的奇偶性排除部分选项,再利用当x>0时,函数值的正负确定选项即可.【详解】函数f(x)定义域为,所以函数f(x)是奇函数,排除BC;当x>0时,,排除D故选:A9、B【解析】所以,所以。故选B。10、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小二、填空题:本大题共6小题,每小题5分,共30分。11、##0.25【解析】运用同角三角函数商数关系式,把弦化切代入即可求解.【详解】,故答案为:.12、【解析】由题意,设代入点坐标可得,计算即得解【详解】由题意,设,过点故,解得故则故答案为:13、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:314、①.##②.【解析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;15、【解析】直接根据任意角的三角函数的定义计算可得;【详解】解:因为角的终边上有一点,则所以,所以故答案为:【点睛】考查任意角三角函数的定义的应用,考查计算能力,属于基础题16、【解析】由,根据余弦函数在的图象可求得结果.【详解】由得:,又,,即的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)解分式不等式得集合A,解绝对值不等式得集合B,由集合的补运算和交运算的定义可得结论;(2)由(1)知集合P={-2,2,3},而集合Q中最大与最小值差为2,因此只有2,3是集合Q中的元素,从而得关于m的不等式,可得m的范围试题解析:(1)或(2)∵可知P中只可能元素2,3属于Q解得18、(1)证明见解析(2)【解析】(1)设,化简计算并判断正负即可得出;(2)根据单调性即可求解.【小问1详解】设,,因为,所以,,则,即,所以函数在上是增函数;【小问2详解】由(1)可知,在单调递增,所以,所以在的值域为.19、(1),(2)见解析(3)【解析】(1)满足是增函数,对于任意都有的函数(2)利用函数的奇偶性的定义转化求解即可(3)利用已知条件转化不等式,通过函数的单调性转化求解即可【小问1详解】因为函数是增函数,对于任意都有,这样的函数很多,其中一种为:,证明如下:函数满足是增函数,,所以满足题意.【小问2详解】令,则由得,即得,故是奇函数【小问3详解】,所以,则,因为,所以,所以,又因为函数是增函数,所以,所以或.所以的解集为:.20、函数在单调递增【解析】根据函数单调性的定义进行证明即可【详解】根据函数单调性定义:任取,所以因为,所以,所以所以原函数单调递增。21、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论